
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.07.06.0029.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
LegendreP[\[Nu], z] \[Proportional] (Tan[Pi \[Nu]]/2)
((Gamma[-\[Nu]]/(2^\[Nu] Gamma[1 + \[Nu]]))
(2 I Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]
Floor[(Pi + Arg[1 + Subscript[z, 0]])/(2 Pi)] (-1 - Subscript[z, 0])^
\[Nu] + Csc[Pi \[Nu]] (1 + Subscript[z, 0])^\[Nu])
Hypergeometric2F1Regularized[-\[Nu], -\[Nu], -2 \[Nu],
2/(1 + Subscript[z, 0])] - ((2^(1 + \[Nu]) Gamma[1 + \[Nu]])/
Gamma[-\[Nu]]) (2 I Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]
Floor[(Pi + Arg[1 + Subscript[z, 0]])/(2 Pi)] (-1 - Subscript[z, 0])^
(-1 - \[Nu]) + Csc[Pi \[Nu]] (1 + Subscript[z, 0])^(-1 - \[Nu]))
Hypergeometric2F1Regularized[1 + \[Nu], 1 + \[Nu], 2 + 2 \[Nu],
2/(1 + Subscript[z, 0])] - (1/(1 + Subscript[z, 0]))
((-((2^(1 + \[Nu]) Gamma[2 + \[Nu]])/Gamma[-\[Nu]]))
(2 I Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]
Floor[(Pi + Arg[1 + Subscript[z, 0]])/(2 Pi)] (-1 - Subscript[z, 0])^
(-1 - \[Nu]) + Csc[Pi \[Nu]] (1 + Subscript[z, 0])^(-1 - \[Nu]))
Hypergeometric2F1Regularized[1 + \[Nu], 2 + \[Nu], 2 + 2 \[Nu],
2/(1 + Subscript[z, 0])] + (Gamma[1 - \[Nu]]/
(2^\[Nu] Gamma[1 + \[Nu]]))
(2 I Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]
Floor[(Pi + Arg[1 + Subscript[z, 0]])/(2 Pi)] (-1 - Subscript[z, 0])^
\[Nu] + Csc[Pi \[Nu]] (1 + Subscript[z, 0])^\[Nu])
Hypergeometric2F1Regularized[1 - \[Nu], -\[Nu], -2 \[Nu],
2/(1 + Subscript[z, 0])]) (z - Subscript[z, 0]) + \[Ellipsis]) /;
(z -> Subscript[z, 0])
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["Tan", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], "2"], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " "]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["z", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["z", "0"]]], ")"]], "\[Nu]"]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]], "\[Nu]"]]]]], ")"]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], ",", FractionBox["2", RowBox[List["1", "+", SubscriptBox["z", "0"]]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " "]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["z", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]]]], ")"]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["2", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", FractionBox["2", RowBox[List["1", "+", SubscriptBox["z", "0"]]]]]], "]"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["1", "+", SubscriptBox["z", "0"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Nu]"]], "]"]], " "]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["z", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]]]], ")"]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["2", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", FractionBox["2", RowBox[List["1", "+", SubscriptBox["z", "0"]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["z", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["z", "0"]]], ")"]], "\[Nu]"]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]], "\[Nu]"]]]]], ")"]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], ",", FractionBox["2", RowBox[List["1", "+", SubscriptBox["z", "0"]]]]]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", "\[Ellipsis]"]], " ", ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", "\[Nu]"]], Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "\[Nu]"]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[FractionBox["2", RowBox[List[SubscriptBox["z", "0"], "+", "1"]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Nu]", "+", "1"]], Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "1"]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "2"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[FractionBox["2", RowBox[List[SubscriptBox["z", "0"], "+", "1"]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", "\[Nu]"]], Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "\[Nu]"]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[FractionBox["2", RowBox[List[SubscriptBox["z", "0"], "+", "1"]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Nu]", "+", "1"]], Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "2"]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "2"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[FractionBox["2", RowBox[List[SubscriptBox["z", "0"], "+", "1"]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LegendreP </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <tan /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> ν </ci> </apply> </apply> <apply> <times /> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> ν </ci> </apply> </apply> <apply> <times /> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Tan", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["zz", "0"]]], ")"]], "\[Nu]"]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]], "\[Nu]"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], ",", FractionBox["2", RowBox[List["1", "+", SubscriptBox["zz", "0"]]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["2", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", FractionBox["2", RowBox[List["1", "+", SubscriptBox["zz", "0"]]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["2", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", FractionBox["2", RowBox[List["1", "+", SubscriptBox["zz", "0"]]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["zz", "0"]]], ")"]], "\[Nu]"]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]], "\[Nu]"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], ",", FractionBox["2", RowBox[List["1", "+", SubscriptBox["zz", "0"]]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], RowBox[List["1", "+", SubscriptBox["zz", "0"]]]], "+", "\[Ellipsis]"]], ")"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
LegendreP[n,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|