Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,z] > Series representations > Generalized power series > Expansions on branch cuts > For the function itself





http://functions.wolfram.com/07.07.06.0035.01









  


  










Input Form





LegendreP[\[Nu], z] \[Proportional] (Tan[Pi \[Nu]]/2) ((Gamma[-\[Nu]]/(2^\[Nu] Gamma[1 + \[Nu]])) ((1 + x)^\[Nu] Csc[Pi \[Nu]] + 2 I (-1 - x)^\[Nu] Floor[Arg[-x + z]/(2 Pi)]) Hypergeometric2F1Regularized[-\[Nu], -\[Nu], -2 \[Nu], 2/(1 + x)] - ((2^(1 + \[Nu]) Gamma[1 + \[Nu]])/Gamma[-\[Nu]]) ((1 + x)^(-1 - \[Nu]) Csc[Pi \[Nu]] + 2 I (-1 - x)^(-1 - \[Nu]) Floor[Arg[-x + z]/(2 Pi)]) Hypergeometric2F1Regularized[1 + \[Nu], 1 + \[Nu], 2 + 2 \[Nu], 2/(1 + x)] - (1/(1 + x)) ((Gamma[1 - \[Nu]]/(2^\[Nu] Gamma[1 + \[Nu]])) ((1 + x)^\[Nu] Csc[Pi \[Nu]] + 2 I (-1 - x)^\[Nu] Floor[Arg[-x + z]/(2 Pi)]) Hypergeometric2F1Regularized[1 - \[Nu], -\[Nu], -2 \[Nu], 2/(1 + x)] - ((2^(1 + \[Nu]) Gamma[2 + \[Nu]])/ Gamma[-\[Nu]]) ((1 + x)^(-1 - \[Nu]) Csc[Pi \[Nu]] + 2 I (-1 - x)^(-1 - \[Nu]) Floor[Arg[-x + z]/(2 Pi)]) Hypergeometric2F1Regularized[1 + \[Nu], 2 + \[Nu], 2 + 2 \[Nu], 2/(1 + x)]) (z - x) + \[Ellipsis]) /; (z -> x) && Element[x, Reals] && x < -1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["Tan", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], "2"], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " "]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "\[Nu]"], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "x"]], ")"]], "\[Nu]"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], ",", FractionBox["2", RowBox[List["1", "+", "x"]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "x"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["2", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", FractionBox["2", RowBox[List["1", "+", "x"]]]]], "]"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["1", "+", "x"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "\[Nu]"], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "x"]], ")"]], "\[Nu]"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], ",", FractionBox["2", RowBox[List["1", "+", "x"]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "x"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["2", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", FractionBox["2", RowBox[List["1", "+", "x"]]]]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "x"]], ")"]], "\[And]", RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["x", "<", RowBox[List["-", "1"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;2&quot;, RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;2&quot;, RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], &quot;-&quot;, RowBox[List[FractionBox[&quot;1&quot;, RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]]], RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[&quot;2&quot;, RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]]], &quot; &quot;, RowBox[List[&quot;\[CapitalGamma]&quot;, &quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]]]], RowBox[List[&quot;\[CapitalGamma]&quot;, &quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]]], RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, RowBox[List[&quot;\[LeftFloor]&quot;, FractionBox[RowBox[List[&quot;arg&quot;, &quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;x&quot;]], &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Pi]&quot;]]], &quot;\[RightFloor]&quot;]], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;x&quot;]], &quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;\[Nu]&quot;]]], &quot;+&quot;, RowBox[List[SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;\[Nu]&quot;], &quot; &quot;, RowBox[List[&quot;csc&quot;, &quot;(&quot;, RowBox[List[&quot;\[Pi]&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]]]]]], &quot;)&quot;]], &quot; &quot;, TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;2&quot;, RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized]]], &quot;-&quot;, RowBox[List[FractionBox[RowBox[List[SuperscriptBox[&quot;2&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot; &quot;, RowBox[List[&quot;\[CapitalGamma]&quot;, &quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;)&quot;]]]], RowBox[List[&quot;\[CapitalGamma]&quot;, &quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]]], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, RowBox[List[&quot;\[LeftFloor]&quot;, FractionBox[RowBox[List[&quot;arg&quot;, &quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;x&quot;]], &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Pi]&quot;]]], &quot;\[RightFloor]&quot;]], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;x&quot;]], &quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;-&quot;, &quot;1&quot;]]]]], &quot;+&quot;, RowBox[List[SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;-&quot;, &quot;1&quot;]]], &quot; &quot;, RowBox[List[&quot;csc&quot;, &quot;(&quot;, RowBox[List[&quot;\[Pi]&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]]]]]], &quot;)&quot;]], &quot; &quot;, TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;2&quot;, RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized]]]]], &quot;)&quot;]], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;x&quot;]], &quot;)&quot;]]]], &quot;+&quot;, &quot;\[Ellipsis]&quot;]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &lt; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <tan /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <ci> x </ci> </apply> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <lt /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Tan", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "\[Nu]"], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "x"]], ")"]], "\[Nu]"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], ",", FractionBox["2", RowBox[List["1", "+", "x"]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "x"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["2", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", FractionBox["2", RowBox[List["1", "+", "x"]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "\[Nu]"], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "x"]], ")"]], "\[Nu]"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]], ",", FractionBox["2", RowBox[List["1", "+", "x"]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "x"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["2", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", FractionBox["2", RowBox[List["1", "+", "x"]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]]]], RowBox[List["1", "+", "x"]]], "+", "\[Ellipsis]"]], ")"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "x"]], ")"]], "&&", RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["x", "<", RowBox[List["-", "1"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02