|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.07.07.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n, z] == (1/Pi) Integrate[(z + I Sqrt[1 - z^2] Cos[t])^n,
{t, 0, Pi}] /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["\[Pi]", " "]]], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Cos", "[", "t", "]"]]]]]], ")"]], "n"], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", " ", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> π </mi> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> π </mi> </msubsup> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <ci> t </ci> </apply> </apply> </apply> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Cos", "[", "t", "]"]]]]]], ")"]], "n"], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Pi]"], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|