Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,z] > Differentiation > Low-order differentiation > With respect to nu





http://functions.wolfram.com/07.07.20.0003.01









  


  










Input Form





D[LegendreP[\[Nu], z], \[Nu]] == (-((2 \[Nu] + 1)/2)) (1 - z) HypergeometricPFQ[{{1 - \[Nu], 2 + \[Nu]}, {1}, {1, -\[Nu], 1 + \[Nu]}}, {{2, 2}, {}, {2 + \[Nu], 1 - \[Nu]}}, (1 - z)/2, (1 - z)/2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "\[Nu]"], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "1"]], "2"]]], RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", "2"]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["1", "-", "\[Nu]"]]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> &#957; </mi> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 3 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8706; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> TagBox </ci> <ms> P </ms> <ci> LegendreP </ci> </apply> <ms> &#957; </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#8706; </ms> <ms> &#957; </ms> </list> </apply> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#957; </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> F </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 0 </ms> <ms> 2 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 1 </ms> <ms> 3 </ms> </list> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> &#957; </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ms> ; </ms> <ms> 1 </ms> <ms> ; </ms> <ms> 1 </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#957; </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> ; </ms> </list> </apply> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> &#957; </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </list> </list> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> ] </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["\[Nu]_"]]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", "2"]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["1", "-", "\[Nu]"]]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29