|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.07.21.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^(\[Alpha] - 1) LegendreP[\[Nu], z], z] ==
(z^\[Alpha]/\[Alpha]) HypergeometricPFQ[{{-\[Nu], 1 + \[Nu]}, {},
{\[Alpha]}}, {{1}, {}, {\[Alpha] + 1}}, 1/2, -(z/2)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["z", "\[Alpha]"], "\[Alpha]"], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "\[Alpha]", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["\[Alpha]", "+", "1"]], "}"]]]], "}"]], ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["z", "2"]]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mi> α </mi> </msup> <mi> α </mi> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 0 </mn> <mo> ⁢ </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 0 </mn> <mo> ⁢ </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mi> α </mi> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> ⁢ </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ∫ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> α </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> TagBox </ci> <ms> P </ms> <ci> LegendreP </ci> </apply> <ms> ν </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ⅆ </ms> <ms> z </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> α </ms> </apply> <ms> α </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> F </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> 0 </ms> <ms> 1 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 0 </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ν </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <ms> ν </ms> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> <ms> α </ms> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> ; </ms> </list> </apply> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> α </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </list> </apply> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ] </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "\[Alpha]", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["\[Alpha]", "+", "1"]], "}"]]]], "}"]], ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["z", "2"]]]]], "]"]]]], "\[Alpha]"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|