
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.07.21.0006.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[(1/(z + t)) LegendreP[-(1/2) + I \[Tau], t], {t, 1, Infinity}] ==
Pi Sech[Pi \[Tau]] LegendreP[-(1/2) + I \[Tau], z] /;
Element[\[Tau], Reals] && \[Tau] < 1
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "1", "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["z", "+", "t"]]], RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Tau]"]]]], ",", "t"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["\[Pi]", " ", RowBox[List["Sech", "[", RowBox[List["\[Pi]", " ", "\[Tau]"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Tau]"]]]], ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["\[Tau]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[Tau]", "<", "1"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 1 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mfrac> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> τ </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mrow> <mi> t </mi> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> sech </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> τ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> τ </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> τ </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> τ </mi> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> LegendreP </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> τ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> t </ci> </apply> <apply> <power /> <apply> <plus /> <ci> t </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <sech /> <apply> <times /> <pi /> <ci> τ </ci> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> τ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> τ </ci> <reals /> </apply> <apply> <lt /> <ci> τ </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "1", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Tau]_"]]]], ",", "t_"]], "]"]], RowBox[List["z_", "+", "t_"]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["Sech", "[", RowBox[List["\[Pi]", " ", "\[Tau]"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Tau]"]]]], ",", "z"]], "]"]]]], "/;", RowBox[List[RowBox[List["\[Tau]", "\[Element]", "Reals"]], "&&", RowBox[List["\[Tau]", "<", "1"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
LegendreP[n,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|