|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.07.21.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[LegendreP[m, Cos[t]] LegendreP[n, Cos[t]] LegendreP[k, Cos[t]]
Sin[t], {t, 0, Pi}] == 2 ThreeJSymbol[{m, 0}, {n, 0}, {k, 0}]^2 /;
Element[m, Integers] && m >= 0 && Element[n, Integers] && n >= 0 &&
Element[k, Integers] && k >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["m", ",", RowBox[List["Cos", "[", "t", "]"]]]], "]"]], RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List["Cos", "[", "t", "]"]]]], "]"]], RowBox[List["LegendreP", "[", RowBox[List["k", ",", RowBox[List["Cos", "[", "t", "]"]]]], "]"]], RowBox[List["Sin", "[", "t", "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["2", " ", SuperscriptBox[RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List["m", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["n", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "0"]], "}"]]]], "]"]], "2"]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> π </mi> </msubsup> <mrow> <mrow> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> m </mi> </msub> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mo> ( </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["(", Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> <mtext>   </mtext> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> <mtd> <mi> n </mi> </mtd> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mn> 0 </mn> </mtd> <mtd> <mn> 0 </mn> </mtd> </mtr> </mtable> <mtext>   </mtext> <semantics> <mo> ) </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[")", Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <times /> <apply> <ci> LegendreP </ci> <ci> m </ci> <apply> <cos /> <ci> t </ci> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <apply> <cos /> <ci> t </ci> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> k </ci> <apply> <cos /> <ci> t </ci> </apply> </apply> <apply> <sin /> <ci> t </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> ThreeJSymbol </ci> <list> <ci> m </ci> <cn type='integer'> 0 </cn> </list> <list> <ci> n </ci> <cn type='integer'> 0 </cn> </list> <list> <ci> k </ci> <cn type='integer'> 0 </cn> </list> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <ci> ℕ </ci> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> <apply> <in /> <ci> k </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["m_", ",", RowBox[List["Cos", "[", "t_", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", RowBox[List["Cos", "[", "t_", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["k_", ",", RowBox[List["Cos", "[", "t_", "]"]]]], "]"]], " ", RowBox[List["Sin", "[", "t_", "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List["m", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["n", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "0"]], "}"]]]], "]"]], "2"]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,z] | LegendreP[nu,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|