Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,z] > Summation > Infinite summation





http://functions.wolfram.com/07.07.23.0005.01









  


  










Input Form





Sum[((Pochhammer[\[Gamma], n] Pochhammer[1 - \[Gamma], n])/n!^2) LegendreP[n, z] w^n, {n, 0, Infinity}] == Hypergeometric2F1[\[Gamma], 1 - \[Gamma], 1, (1 - Sqrt[w^2 - 2 w z + 1] - w)/2] Hypergeometric2F1[\[Gamma], 1 - \[Gamma], 1, (1 - Sqrt[w^2 - 2 w z + 1] + w)/2] /; -1 < z < 1 && Abs[w] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["\[Gamma]", ",", "n"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Gamma]"]], ",", "n"]], "]"]], " "]], SuperscriptBox[RowBox[List["(", RowBox[List["n", "!"]], ")"]], "2"]], RowBox[List["LegendreP", "[", RowBox[List["n", ",", "z"]], "]"]], SuperscriptBox["w", "n"]]]]], "\[Equal]", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["\[Gamma]", ",", RowBox[List["1", "-", "\[Gamma]"]], ",", "1", ",", FractionBox[RowBox[List["1", "-", SqrtBox[RowBox[List[SuperscriptBox["w", "2"], "-", RowBox[List["2", " ", "w", " ", "z"]], "+", "1"]]], "-", "w"]], "2"]]], "]"]], RowBox[List["Hypergeometric2F1", "[", RowBox[List["\[Gamma]", ",", RowBox[List["1", "-", "\[Gamma]"]], ",", "1", ",", FractionBox[RowBox[List["1", "-", SqrtBox[RowBox[List[SuperscriptBox["w", "2"], "-", RowBox[List["2", " ", "w", " ", "z"]], "+", "1"]]], "+", "w"]], "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> &#947; </mi> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;\[Gamma]&quot;, &quot;)&quot;]], &quot;n&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#947; </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Gamma]&quot;]], &quot;)&quot;]], &quot;n&quot;], Pochhammer] </annotation> </semantics> </mrow> <msup> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mi> n </mi> </msup> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#947; </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#947; </mi> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;\[Gamma]&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Gamma]&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;1&quot;, Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;w&quot;, &quot;2&quot;], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;z&quot;, &quot; &quot;, &quot;w&quot;]], &quot;+&quot;, &quot;1&quot;]]], &quot;-&quot;, &quot;w&quot;]], &quot;)&quot;]]]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#947; </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#947; </mi> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;\[Gamma]&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Gamma]&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;1&quot;, Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;w&quot;, &quot;2&quot;], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;z&quot;, &quot; &quot;, &quot;w&quot;]], &quot;+&quot;, &quot;1&quot;]]], &quot;+&quot;, &quot;w&quot;]], &quot;)&quot;]]]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <ci> &#947; </ci> <ci> n </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#947; </ci> </apply> </apply> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <power /> <ci> w </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <ci> &#947; </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#947; </ci> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <ci> w </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <ci> &#947; </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#947; </ci> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <ci> w </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> w </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["\[Gamma]_", ",", "n_"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Gamma]_"]], ",", "n_"]], "]"]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "z_"]], "]"]], " ", SuperscriptBox["w_", "n_"]]], SuperscriptBox[RowBox[List["(", RowBox[List["n_", "!"]], ")"]], "2"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["\[Gamma]", ",", RowBox[List["1", "-", "\[Gamma]"]], ",", "1", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox[RowBox[List[SuperscriptBox["w", "2"], "-", RowBox[List["2", " ", "w", " ", "z"]], "+", "1"]]], "-", "w"]], ")"]]]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["\[Gamma]", ",", RowBox[List["1", "-", "\[Gamma]"]], ",", "1", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox[RowBox[List[SuperscriptBox["w", "2"], "-", RowBox[List["2", " ", "w", " ", "z"]], "+", "1"]]], "+", "w"]], ")"]]]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "&&", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29