|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.12.03.0068.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreQ[3, 1, 3, z] ==
(26 z - 30 z^3 + 3 (1 - 6 z^2 + 5 z^4) (Log[z + 1] - Log[z - 1]))/
(4 Sqrt[z - 1] Sqrt[z + 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["3", ",", "1", ",", "3", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List["(", RowBox[List[RowBox[List["26", " ", "z"]], "-", RowBox[List["30", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["5", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["z", "+", "1"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]], ")"]], RowBox[List["4", " ", SqrtBox[RowBox[List["z", "-", "1"]]], SqrtBox[RowBox[List["z", "+", "1"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mstyle scriptlevel='0'> <msubsup> <semantics> <mi> 𝔔 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalQ]", LegendreQ] </annotation> </semantics> <mn> 3 </mn> <mn> 1 </mn> </msubsup> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mi> z </mi> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 26 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> 𝔔 </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 26 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["3", ",", "1", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["26", " ", "z"]], "-", RowBox[List["30", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["5", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["z", "+", "1"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]], RowBox[List["4", " ", SqrtBox[RowBox[List["z", "-", "1"]]], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|