Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,3,z] > General characteristics > Branch cuts > With respect to z





http://functions.wolfram.com/07.12.04.0023.01









  


  










Input Form





Limit[LegendreQ[\[Nu], \[Mu], 3, x - I \[Epsilon]], \[Epsilon] -> Plus[0]] == 2 I E^(I Pi \[Mu]) LegendreQ[\[Nu], \[Mu], 3, -x] Sin[Pi (\[Mu] + \[Nu])] - I E^(I Pi \[Nu]) (1 + E^(2 I Pi \[Mu])) Pi LegendreP[\[Nu], \[Mu], 3, -x] + I (1 + E^(2 I Pi \[Mu])) Pi LegendreP[\[Nu], \[Mu], 3, x] + LegendreQ[\[Nu], \[Mu], 3, x]/E^(2 I Pi \[Mu]) /; x < -1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", RowBox[List["x", "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]]]], "]"]], ",", RowBox[List["\[Epsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "\[Equal]", " ", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", RowBox[List["-", "x"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]]]], " ", "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]]]], ")"]], " ", "\[Pi]", " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", RowBox[List["-", "x"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]]]], ")"]], " ", "\[Pi]", " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "x"]], "]"]]]]]]]], " ", "/;", RowBox[List["x", "<", RowBox[List["-", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> &#1013; </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mrow> <mo> + </mo> <mn> 0 </mn> </mrow> </mrow> </munder> <mo> &#8290; </mo> <mtext> &#8201; </mtext> <mrow> <mstyle scriptlevel='0'> <msubsup> <semantics> <mi> &#120084; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalQ]&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> </mstyle> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#1013; </mi> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> &#120083; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalP]&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;-&quot;, &quot;x&quot;]], HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> &#120083; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalP]&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> x </mi> <annotation encoding='Mathematica'> TagBox[&quot;x&quot;, HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> &#120084; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalQ]&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> x </mi> <annotation encoding='Mathematica'> TagBox[&quot;x&quot;, HoldComplete[LegendreQ, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> &#120084; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalQ]&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;-&quot;, &quot;x&quot;]], HoldComplete[LegendreQ, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> x </mi> <mo> &lt; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <limit /> <bvar> <ci> &#1013; </ci> </bvar> <condition> <apply> <tendsto /> <ci> &#1013; </ci> <apply> <plus /> <cn type='integer'> 0 </cn> </apply> </apply> </condition> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120084; </ci> </apply> <ci> &#957; </ci> </apply> <ci> &#956; </ci> </apply> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> &#1013; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> &#956; </ci> </apply> </apply> </apply> <pi /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> &#120083; </ci> </apply> <ci> &#957; </ci> </apply> <ci> &#956; </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> &#956; </ci> </apply> </apply> </apply> <imaginaryi /> <pi /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> &#120083; </ci> </apply> <ci> &#957; </ci> </apply> <ci> &#956; </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 3 </cn> </apply> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <pi /> <ci> &#956; </ci> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120084; </ci> </apply> <ci> &#957; </ci> </apply> <ci> &#956; </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreQ </ci> <cn type='integer'> 3 </cn> </apply> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> &#956; </ci> </apply> </apply> <imaginaryi /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120084; </ci> </apply> <ci> &#957; </ci> </apply> <ci> &#956; </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreQ </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", RowBox[List["x_", "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]_"]]]]]], "]"]], ",", RowBox[List["\[Epsilon]_", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", RowBox[List["-", "x"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]]]], ")"]], " ", "\[Pi]", " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", RowBox[List["-", "x"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]]]], ")"]], " ", "\[Pi]", " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "x"]], "]"]]]]]], "/;", RowBox[List["x", "<", RowBox[List["-", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29