|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.12.06.0012.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreQ[\[Nu], 0, 3, z] ==
((1/2) (Log[z + 1] - Log[z - 1]) - PolyGamma[\[Nu] + 1])
Hypergeometric2F1[-\[Nu], 1 + \[Nu], 1, (1 - z)/2] +
Sum[((Pochhammer[-\[Nu], k] Pochhammer[\[Nu] + 1, k] PolyGamma[k + 1])/
k!^2) ((1 - z)/2)^k, {k, 0, Infinity}] /; Abs[(1 - z)/2] < 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "0", ",", "3", ",", "z"]], "]"]], "\[Equal]", " ", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["z", "+", "1"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", "1", ",", FractionBox[RowBox[List["1", "-", "z"]], "2"]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", "k"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]]]]]], SuperscriptBox[RowBox[List["k", "!"]], "2"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mstyle scriptlevel='0'> <msubsup> <semantics> <mi> 𝔔 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalQ]", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mn> 0 </mn> </msubsup> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mi> z </mi> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", "\[Nu]"]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "1"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox[RowBox[List["1", "-", "z"]], "2"], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> 𝔔 </ci> </apply> <ci> ν </ci> </apply> <cn type='integer'> 0 </cn> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "0", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["z", "+", "1"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", "1", ",", FractionBox[RowBox[List["1", "-", "z"]], "2"]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", "k"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|