|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.12.17.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreQ[\[Nu], \[Mu] + 1, 3, z] + (\[Mu] (\[Mu] - 1) - \[Nu] (1 + \[Nu]))
LegendreQ[\[Nu], \[Mu] - 1, 3, z] ==
(-((2 \[Mu] z)/(Sqrt[z - 1] Sqrt[z + 1]))) LegendreQ[\[Nu], \[Mu], 3, z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", RowBox[List["\[Mu]", "+", "1"]], ",", "3", ",", "z"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[Mu]", RowBox[List["(", RowBox[List["\[Mu]", "-", "1"]], ")"]]]], "-", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", RowBox[List["\[Mu]", "-", "1"]], ",", "3", ",", "z"]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[Mu]", " ", "z", " "]], RowBox[List[SqrtBox[RowBox[List["z", "-", "1"]]], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]]]]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "z"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> 𝔔 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalQ]", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ν </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> 𝔔 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalQ]", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mrow> <mi> μ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> <mo> ⁢ </mo> <mi> z </mi> <mtext> </mtext> </mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> 𝔔 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalQ]", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> 𝔔 </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreQ </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> μ </ci> <apply> <plus /> <ci> μ </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> 𝔔 </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <ci> μ </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreQ </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> 𝔔 </ci> </apply> <ci> ν </ci> </apply> <ci> μ </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreQ </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", RowBox[List["\[Mu]_", "+", "1"]], ",", "3", ",", "z_"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[Mu]_", " ", RowBox[List["(", RowBox[List["\[Mu]_", "-", "1"]], ")"]]]], "-", RowBox[List["\[Nu]_", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]_"]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", RowBox[List["\[Mu]_", "-", "1"]], ",", "3", ",", "z_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Mu]", " ", "z"]], ")"]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "z"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["z", "-", "1"]]], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|