Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,3,z] > Differentiation > Symbolic differentiation > With respect to nu





http://functions.wolfram.com/07.12.20.0011.02









  


  










Input Form





D[LegendreQ[\[Nu], \[Mu], 3, z], {\[Nu], m}] == (Pi/2) Csc[\[Mu] Pi] E^(Pi I \[Mu]) (((z + 1)^(\[Mu]/2)/(z - 1)^(\[Mu]/2)) Sum[(1/(Gamma[1 - \[Mu] + k] k!)) ((1 - z)/2)^k Sum[Binomial[m, j] Sum[StirlingS1[k, i] Pochhammer[i - j + 1, j] \[Nu]^(i - j) Sum[(-1)^r StirlingS1[k, r] Pochhammer[ r - m + j + 1, m - j] (\[Nu] + 1)^(r - m + j), {r, 1, k}], {i, 1, k}], {j, 0, m}], {k, 0, Infinity}] - D[Pochhammer[1 + \[Nu] - \[Mu], 2 \[Mu]], {\[Nu], m}] LegendreP[\[Nu], -\[Mu], 3, z] - ((z - 1)^(\[Mu]/2)/(z + 1)^(\[Mu]/2)) Sum[Binomial[m, p] D[Pochhammer[1 + \[Nu] - \[Mu], 2 \[Mu]], {\[Nu], m - p}] Sum[(1/(Gamma[1 + \[Mu] + k] k!)) ((1 - z)/2)^k Sum[Binomial[p, j] Sum[StirlingS1[k, i] Pochhammer[i - j + 1, j] \[Nu]^(i - j) Sum[(-1)^r StirlingS1[k, r] Pochhammer[ r - p + j + 1, p - j] (\[Nu] + 1)^(r - p + j), {r, 1, k}], {i, 1, k}], {j, 0, p}], {k, 0, Infinity}], {p, 1, m}]) /; Abs[(1 - z)/2] < 1 && !Element[\[Mu], Integers] && Element[m, Integers] && m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], " ", RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Mu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["i", "-", "j", "+", "1"]], ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List["i", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["r", "-", "m", "+", "j", "+", "1"]], ",", RowBox[List["m", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["r", "-", "m", "+", "j"]]]]]]]]]]]]]]]]]]]]], "-", RowBox[List[RowBox[List["D", "[", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]]], "]"]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "3", ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "p"]], "]"]], RowBox[List["D", "[", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ",", RowBox[List["2", "\[Mu]"]]]], "]"]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List["m", "-", "p"]]]], "}"]]]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "p"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["p", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["i", "-", "j", "+", "1"]], ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List["i", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["r", "-", "p", "+", "j", "+", "1"]], ",", RowBox[List["p", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["r", "-", "p", "+", "j"]]]]]]]]]]]]]]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <mrow> <mstyle scriptlevel='0'> <msubsup> <semantics> <mi> &#120084; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalQ]&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mi> z </mi> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mo> ( </mo> <mtext> </mtext> <mrow> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> i </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mo> &#8290; </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;j&quot;, &quot;-&quot;, &quot;m&quot;, &quot;+&quot;, &quot;r&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;m&quot;, &quot;-&quot;, &quot;j&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;-&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mstyle scriptlevel='0'> <msubsup> <semantics> <mi> &#120083; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalP]&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </msubsup> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mi> z </mi> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;p&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;-&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;p&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> i </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mo> &#8290; </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> j </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;j&quot;, &quot;-&quot;, &quot;p&quot;, &quot;+&quot;, &quot;r&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;j&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#956; </mi> <mo> &#8713; </mo> <mi> &#8484; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120084; </ci> </apply> <ci> &#957; </ci> </apply> <ci> &#956; </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <csc /> <apply> <times /> <ci> &#956; </ci> <pi /> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> &#956; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> j </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> i </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <ci> &#957; </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120083; </ci> </apply> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> p </ci> </apply> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </degree> </bvar> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> i </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <ci> &#957; </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <ci> &#956; </ci> <ci> &#8484; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "m_"]], "}"]]]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Mu]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["i", "-", "j", "+", "1"]], ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List["i", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["r", "-", "m", "+", "j", "+", "1"]], ",", RowBox[List["m", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["r", "-", "m", "+", "j"]]]]]]]]]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], "-", RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]]]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "3", ",", "z"]], "]"]]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "p"]], "]"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List["m", "-", "p"]]]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "p"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["p", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["i", "-", "j", "+", "1"]], ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List["i", "-", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["r", "-", "p", "+", "j", "+", "1"]], ",", RowBox[List["p", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["r", "-", "p", "+", "j"]]]]]]]]]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "&&", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29