Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,3,z] > Representations through more general functions > Through hypergeometric functions > Involving 2F1





http://functions.wolfram.com/07.12.26.0005.01









  


  










Input Form





LegendreQ[\[Nu], \[Mu], 3, z] == (-(Pi/2)) Csc[Pi \[Mu]]^2 E^(Pi I \[Mu]) ((Sin[Pi \[Nu]] ((1 - z)^\[Mu]/(z - 1)^\[Mu]) + Sin[Pi (\[Mu] - \[Nu])]) ((z - 1)^(\[Mu]/2)/(z + 1)^(\[Mu]/2)) (1/Gamma[1 - \[Mu]]) Hypergeometric2F1[-\[Nu], \[Nu] + 1, 1 - \[Mu], (1 + z)/2] + (Pi/(Gamma[-\[Mu] - \[Nu]] Gamma[1 - \[Mu] + \[Nu]])) (1 - Csc[Pi (\[Mu] + \[Nu])] Sin[Pi \[Nu]] ((z - 1)^\[Mu]/ (1 - z)^\[Mu])) ((z + 1)^(\[Mu]/2)/(z - 1)^(\[Mu]/2)) (1/Gamma[1 + \[Mu]]) Hypergeometric2F1[-\[Nu], \[Nu] + 1, 1 + \[Mu], (1 + z)/2]) /; !Element[\[Mu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "2"]]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Mu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "\[Mu]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Mu]"], " "]]]]], "+", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]]]], "]"]]]], " ", ")"]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], " ", FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]"]], "]"]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["\[Nu]", "+", "1"]], ",", RowBox[List["1", "-", "\[Mu]"]], ",", FractionBox[RowBox[List["1", "+", "z"]], "2"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", " "]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Mu]"], RowBox[List[" ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "\[Mu]"], " "]]]]]]], ")"]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], RowBox[List[" ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " "]]], FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]"]], "]"]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["\[Nu]", "+", "1"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", FractionBox[RowBox[List["1", "+", "z"]], "2"]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> &#120084; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalQ]&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreQ, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mtext> </mtext> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Mu]&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mrow> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mtext> </mtext> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mrow> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#956; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120084; </ci> </apply> <ci> &#957; </ci> </apply> <ci> &#956; </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreQ </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> &#956; </ci> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> &#956; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> &#957; </ci> <pi /> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#956; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <pi /> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <csc /> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <pi /> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> &#957; </ci> <pi /> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <ci> &#956; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#956; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", "\[Pi]"]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Mu]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "\[Mu]"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Mu]"]], "+", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["\[Nu]", "+", "1"]], ",", RowBox[List["1", "-", "\[Mu]"]], ",", FractionBox[RowBox[List["1", "+", "z"]], "2"]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]"]], "]"]]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Mu]"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "\[Mu]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["\[Nu]", "+", "1"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", FractionBox[RowBox[List["1", "+", "z"]], "2"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]"]], "]"]]]]]]], ")"]]]], "/;", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29