| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.12.26.0078.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | (1/Sqrt[z^2 + 1]) LegendreP[\[Mu] + 1/2, -\[Nu] - 1/2, 3, Sqrt[z^2 + 1]] 
   LegendreQ[\[Nu], \[Mu], 3, Sqrt[1 + z^2]/z] == 
  (E^(Pi I \[Mu])/(Sqrt[2] (1 + \[Mu] + \[Nu]) Gamma[1 - \[Mu] + \[Nu]])) 
   MeijerG[{{3/4, -(1/4) - \[Mu], 3/4 + \[Mu]}, {}}, 
    {{3/4 + \[Nu]}, {1/4, -(1/4) - \[Nu]}}, z, 1/2] /; Re[z] > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[FractionBox["1", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]]], RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Mu]", "+", FractionBox["1", "2"]]], ",", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", FractionBox["1", "2"]]], ",", "3", ",", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]]]], "]"]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]], "z"]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Mu]"]]], RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "-", "\[Mu]"]], ",", RowBox[List[FractionBox["3", "4"], "+", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "-", "\[Nu]"]]]], "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <semantics>  <mi> 𝔓 </mi>  <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreP] </annotation>  </semantics>  <mrow>  <mi> μ </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <semantics>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <annotation encoding='Mathematica'> TagBox[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]], HoldComplete[LegendreP, 3]] </annotation>  </semantics>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <semantics>  <mi> 𝔔 </mi>  <annotation encoding='Mathematica'> TagBox["\[GothicCapitalQ]", LegendreQ] </annotation>  </semantics>  <mi> ν </mi>  <mi> μ </mi>  </msubsup>  <mo> ( </mo>  <semantics>  <mfrac>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mi> z </mi>  </mfrac>  <annotation encoding='Mathematica'> TagBox[FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]], "z"], HoldComplete[LegendreQ, 3]] </annotation>  </semantics>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  </msup>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> μ </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> μ </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> μ </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mi> μ </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "3"]], RowBox[List["1", ",", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]], MeijerG], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox["3", "4"], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "\[Mu]"]], "-", FractionBox["1", "4"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Mu]", "+", FractionBox["3", "4"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List["\[Nu]", "+", FractionBox["3", "4"]]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "4"], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "\[Nu]"]], "-", FractionBox["1", "4"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <apply>  <ci> LegendreP </ci>  <ci> 𝔓 </ci>  </apply>  <apply>  <plus />  <ci> μ </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <apply>  <ci> HoldComplete </ci>  <ci> LegendreP </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <apply>  <ci> LegendreQ </ci>  <ci> 𝔔 </ci>  </apply>  <ci> ν </ci>  </apply>  <ci> μ </ci>  </apply>  <apply>  <apply>  <ci> HoldComplete </ci>  <ci> LegendreQ </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <pi />  <imaginaryi />  <ci> μ </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> μ </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <ci> Γ </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> μ </ci>  </apply>  <ci> ν </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <cn type='rational'> 3 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <ci> μ </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </list>  <list />  </list>  <list>  <list>  <apply>  <plus />  <ci> ν </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </list>  <list>  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </list>  </list>  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <gt />  <apply>  <times />  <real />  <ci> z </ci>  </apply>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Mu]_", "+", FractionBox["1", "2"]]], ",", RowBox[List[RowBox[List["-", "\[Nu]_"]], "-", FractionBox["1", "2"]]], ",", "3", ",", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "+", "1"]]]]], "]"]], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["z_", "2"]]]], "z_"]]], "]"]]]], SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "+", "1"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Mu]"]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "-", "\[Mu]"]], ",", RowBox[List[FractionBox["3", "4"], "+", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "-", "\[Nu]"]]]], "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]], RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |