Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,z] > Differentiation > Symbolic differentiation > With respect to nu





http://functions.wolfram.com/07.10.20.0005.01









  


  










Input Form





D[LegendreQ[\[Nu], z], {\[Nu], m}] == Sum[(1/k!^2) (((1/2) (Log[1 + z] - Log[1 - z]) + PolyGamma[k + 1]) Sum[Binomial[m, j] D[Pochhammer[-\[Nu], k], {\[Nu], j}] D[Pochhammer[1 + \[Nu], k], {\[Nu], m - j}], {j, 0, m}] - Sum[D[Pochhammer[-\[Nu], k], {\[Nu], q}] D[Pochhammer[1 + \[Nu], k], {\[Nu], r}] KroneckerDelta[q + r + s - m] Multinomial[q, r, s] PolyGamma[s, 1 + \[Nu]], {q, 0, m}, {r, 0, m}, {s, 0, m}]) ((1 - z)/2)^k, {k, 0, Infinity}] /; Abs[(1 - z)/2] < 1 && !Element[\[Nu], Integers] && Element[m, Integers] && m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[" ", SuperscriptBox[RowBox[List["k", "!"]], "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "j"]], "}"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List["m", "-", "j"]]]], "}"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]]]]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "m"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], "m"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], "m"], RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "q"]], "}"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "r"]], "}"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]]]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List["q", "+", "r", "+", "s", "-", "m"]], "]"]], " ", RowBox[List["Multinomial", "[", RowBox[List["q", ",", "r", ",", "s"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["s", ",", RowBox[List["1", "+", "\[Nu]"]]]], "]"]]]]]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"]]]]]]], "/;", " ", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <mrow> <msub> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> j </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> j </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> q </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> q </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> r </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> r </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> q </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mi> m </mi> </mrow> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> q </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> ; </mo> <mi> q </mi> </mrow> <mo> , </mo> <mi> r </mi> <mo> , </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;r&quot;, &quot;+&quot;, &quot;s&quot;]], &quot;;&quot;, &quot;q&quot;]], &quot;,&quot;, &quot;r&quot;, &quot;,&quot;, &quot;s&quot;]], &quot;)&quot;]], Multinomial, Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> j </ci> </apply> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> j </ci> </degree> </bvar> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> k </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </degree> </bvar> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> q </ci> </degree> </bvar> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> k </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> r </ci> </degree> </bvar> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <ci> q </ci> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <ci> Multinomial </ci> <ci> q </ci> <ci> r </ci> <ci> s </ci> </apply> <apply> <ci> PolyGamma </ci> <ci> s </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "m_"]], "}"]]]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "j"]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List["m", "-", "j"]]]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]]]]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "m"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], "m"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], "m"], RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "q"]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "r"]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]]]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List["q", "+", "r", "+", "s", "-", "m"]], "]"]], " ", RowBox[List["Multinomial", "[", RowBox[List["q", ",", "r", ",", "s"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["s", ",", RowBox[List["1", "+", "\[Nu]"]]]], "]"]]]]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "&&", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29