Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,z] > Representations through more general functions > Through Meijer G > Classical cases for the direct function itself





http://functions.wolfram.com/07.10.26.0007.01









  


  










Input Form





LegendreQ[\[Nu], z] == (-(Sin[Pi \[Nu]]/(2 Pi))) (Log[1 + z] - Log[1 - z] - 2 PolyGamma[1 + \[Nu]]) MeijerG[{{\[Nu] + 1, -\[Nu]}, {}}, {{0}, {0}}, (z - 1)/2] - (Sin[Pi \[Nu]]/(2 Pi^2 I)) Integrate[(((Gamma[s] Gamma[1 + \[Nu] - s] Gamma[-\[Nu] - s])/ Gamma[1 - s]) PolyGamma[1 - s])/((z - 1)/2)^s, {s, \[Gamma] - I Infinity, \[Gamma] + I Infinity}] /; \[Gamma] > 0 && \[Gamma] < -Re[\[Nu]] && \[Gamma] < 1 + Re[\[Nu]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]]], ")"]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", RowBox[List["-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", "0", "}"]]]], "}"]], ",", FractionBox[RowBox[List["z", "-", "1"]], "2"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["\[Pi]", " "]], "2"], "\[ImaginaryI]"]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]", "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "s"]], "]"]]]], RowBox[List[" ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "s"]], "]"]]]]], RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "s"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], "2"], ")"]], RowBox[List["-", "s"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["\[Gamma]", ">", "0"]], "\[And]", RowBox[List["\[Gamma]", "<", RowBox[List["-", RowBox[List["Re", "[", "\[Nu]", "]"]]]]]], "\[And]", RowBox[List["\[Gamma]", "<", RowBox[List["1", "+", RowBox[List["Re", "[", "\[Nu]", "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mi> &#947; </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> </mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> <mo> + </mo> <mi> &#947; </mi> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> s </mi> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]], RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[FractionBox[RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <mi> &#947; </mi> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#947; </mi> <mo> &lt; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#947; </mi> <mo> &lt; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> sin </ci> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <imaginaryi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <int /> <bvar> <ci> s </ci> </bvar> <lowlimit> <apply> <plus /> <ci> &#947; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <imaginaryi /> <infinity /> </apply> <ci> &#947; </ci> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <times /> <ci> &#915; </ci> <ci> s </ci> </apply> <apply> <times /> <ci> &#915; </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <times /> <ci> &#915; </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> &#915; </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> sin </ci> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> </list> <list> <cn type='integer'> 0 </cn> </list> </list> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <ci> &#947; </ci> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <ci> &#947; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <real /> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <lt /> <ci> &#947; </ci> <apply> <plus /> <apply> <times /> <real /> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", RowBox[List["-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", "0", "}"]]]], "}"]], ",", FractionBox[RowBox[List["z", "-", "1"]], "2"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]", "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "s"]], "]"]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "s"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], "2"], ")"]], RowBox[List["-", "s"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s"]], "]"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]], RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", "\[ImaginaryI]"]]]]], "/;", RowBox[List[RowBox[List["\[Gamma]", ">", "0"]], "&&", RowBox[List["\[Gamma]", "<", RowBox[List["-", RowBox[List["Re", "[", "\[Nu]", "]"]]]]]], "&&", RowBox[List["\[Gamma]", "<", RowBox[List["1", "+", RowBox[List["Re", "[", "\[Nu]", "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29