|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Primary definition
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.02.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ZetaClassical[s, a] == Sum[1/(a + k)^s, {k, 0, Infinity}] /; Re[s] > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], "s"]]]]]], "/;", " ", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mover> <mi> ζ </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox["\[Zeta]", "^"], "(", RowBox[List[TagBox["s", Rule[Editable, True]], ",", TagBox["a", Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b], Zeta[$CellContext`a, $CellContext`b]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Zeta </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> s </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZetaClassical", "[", RowBox[List["s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], "s"]]]], "/;", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|