
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with arbitrary {m,n,p,q}
Case {m,n,p,q}={1,p,p,q}
|
|

|

|

|

|

|
http://functions.wolfram.com/07.34.03.0016.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
MeijerG[{{0, (Subscript[a, 1] - m)/n, (Subscript[a, 1] - m + 1)/n,
\[Ellipsis], (Subscript[a, 1] - m + n - 1)/n, \[Ellipsis],
(Subscript[a, p] - m)/n, (Subscript[a, p] - m + 1)/n, \[Ellipsis],
(Subscript[a, p] - m + n - 1)/n}, {}},
{{0}, {-(m/n), (-m + 1)/n, \[Ellipsis], (-m + n - 1)/n,
(Subscript[b, 1] - m)/n, (Subscript[b, 1] - m + 1)/n, \[Ellipsis],
(Subscript[b, 1] - m + n - 1)/n, \[Ellipsis], (Subscript[b, q] - m)/n,
(Subscript[b, q] - m + 1)/n, \[Ellipsis], (Subscript[b, q] - m + n - 1)/
n}}, z] == ((2 Pi)^((q - p + 1) ((1 - n)/2))
n^((1/2) (-1 - p + q) + Sum[Subscript[a, j], {j, 1, p}] -
Sum[Subscript[b, j], {j, 1, q}]) (Product[Gamma[1 - Subscript[a, j]],
{j, 1, p}]/Product[Gamma[1 - Subscript[b, j]], {j, 1, q}])
Sum[Exp[-((2 Pi I k m)/n)] HypergeometricPFQ[{1 - Subscript[a, 1],
\[Ellipsis], 1 - Subscript[a, p]}, {1 - Subscript[b, 1], \[Ellipsis],
1 - Subscript[b, q]}, n^(q - p + 1) Exp[(2 Pi I k)/n] (-z)^(1/n)],
{k, 0, n - 1}])/(-z)^(m/n) /; Element[m, Integers] && m > 0 &&
Element[n, Integers] && n > 0
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["-", "m"]], "n"], ",", FractionBox[RowBox[List[RowBox[List["-", "m"]], "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[RowBox[List["-", "m"]], "+", "n", "-", "1"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m", "+", "n", "-", "1"]], "n"]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["q", "-", "p", "+", "1"]], ")"]], FractionBox[RowBox[List["1", "-", "n"]], "2"]]]], SuperscriptBox["n", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "p", "+", "q"]], ")"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]]]]], FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "j"]]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["b", "j"]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", "m"]], "/", "n"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k", " ", "m"]], "n"]]], "]"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "-", SubscriptBox["a", "p"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "-", SubscriptBox["b", "q"]]]]], "}"]], ",", RowBox[List[SuperscriptBox["n", RowBox[List["q", "-", "p", "+", "1"]]], RowBox[List["Exp", "[", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "n"], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "n"]]]]]]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> q </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mi> n </mi> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> - </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List[RowBox[List["p", " ", "n"]], ",", RowBox[List[RowBox[List["q", " ", "n"]], "+", "n"]]]], RowBox[List["1", ",", RowBox[List["p", " ", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m", "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m", "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m", "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m", "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["m", "n"]]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["-", "m"]], "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["-", "m"]], "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m", "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m", "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m", "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m", "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> n </mi> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mi> n </mi> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> p </mi> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <msup> <mi> n </mi> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> n </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "p"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "q"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[RowBox[List[SuperscriptBox["n", RowBox[List["q", "-", "p", "+", "1"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "n"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "n"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> q </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mi> n </mi> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> - </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List[RowBox[List["p", " ", "n"]], ",", RowBox[List[RowBox[List["q", " ", "n"]], "+", "n"]]]], RowBox[List["1", ",", RowBox[List["p", " ", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m", "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "1"], "-", "m", "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m", "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["a", "p"], "-", "m", "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["m", "n"]]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["-", "m"]], "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["-", "m"]], "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m", "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "1"], "-", "m", "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m", "+", "1"]], "n"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[SubscriptBox["b", "q"], "-", "m", "+", "n", "-", "1"]], "n"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> n </mi> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mi> n </mi> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mi> n </mi> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> p </mi> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <msup> <mi> n </mi> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> n </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "p"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "q"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[RowBox[List[SuperscriptBox["n", RowBox[List["q", "-", "p", "+", "1"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "n"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "n"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|

|

|

|

|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|