Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
MeijerG






Mathematica Notation

Traditional Notation









Hypergeometric Functions > MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z] > Specific values > Specialized values > Cases with m==0 > Case {m,n,p,q}={0,1,2,0}





http://functions.wolfram.com/07.34.03.0053.01









  


  










Input Form





MeijerG[{{a}, {a - 1/2 + n}}, {{}, {}}, z] == ((-(I/Sqrt[Pi])) z^(a - 1) (-z)^(n/2) (I Cos[(n Pi)/2 - 2 (I/Sqrt[-z])] Sum[((-z)^k Gamma[1/2 + 2 k + Abs[-(1/2) + n]])/ (16^k ((2 k)! Gamma[1/2 - 2 k + Abs[-(1/2) + n]])), {k, 0, Floor[(1/4) (-1 + 2 Abs[-(1/2) + n])]}] + Sqrt[-z] (Sin[(n Pi)/2 - 2 (I/Sqrt[-z])] Sum[(2^(-2 - 4 k) (-z)^k (1/2 + 2 k + Abs[-(1/2) + n])!)/ ((-(3/2) - 2 k + Abs[-(1/2) + n])! Gamma[2 + 2 k]), {k, 0, Floor[(1/4) (-3 + 2 Abs[-(1/2) + n])]}])))/E^((1/2) I n Pi) /; Element[n, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a", "}"]], ",", RowBox[List["{", RowBox[List["a", "-", FractionBox["1", "2"], "+", "n"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", SqrtBox["\[Pi]"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["a", "-", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["n", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["\[ImaginaryI]", " ", "/", SqrtBox[RowBox[List["-", "z"]]]]]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]]]], ")"]]]], "]"]]], FractionBox[RowBox[List[SuperscriptBox["16", RowBox[List["-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "k"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]], "+", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]], "]"]]]]]]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", "z"]]], RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["\[ImaginaryI]", " ", "/", SqrtBox[RowBox[List["-", "z"]]]]]]]]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]]]], ")"]]]], "]"]]], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["4", " ", "k"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "k"], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]], "+", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]], ")"]], "!"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;0&quot;]], RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;a&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;n&quot;, &quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <msup> <mn> 16 </mn> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </list> </list> <list> <list /> <list /> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <abs /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <abs /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <abs /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 16 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <abs /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <abs /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a_", "}"]], ",", RowBox[List["{", RowBox[List["a_", "-", FractionBox["1", "2"], "+", "n_"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["a", "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["n", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]"]], SqrtBox[RowBox[List["-", "z"]]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]]]], ")"]]]], "]"]]], FractionBox[RowBox[List[SuperscriptBox["16", RowBox[List["-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "k"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]], "+", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]], "]"]]]]]]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]"]], SqrtBox[RowBox[List["-", "z"]]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]]]], ")"]]]], "]"]]], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["4", " ", "k"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "k"], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]], "+", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]], ")"]], "!"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["Abs", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], "]"]]]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]]]]], ")"]]]]]], ")"]]]], SqrtBox["\[Pi]"]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29