Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
MeijerG






Mathematica Notation

Traditional Notation









Hypergeometric Functions > MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z] > Specific values > Specialized values > Cases with m==0 > Case {m,n,p,q}={0,2,2,2}





http://functions.wolfram.com/07.34.03.0102.01









  


  










Input Form





MeijerG[{{a, c}, {}}, {{}, {b, b + c - a}}, z] == ((Sqrt[Pi] UnitStep[-1 + Abs[z]])/Gamma[a - b]) z^((1/4) (-1 - 2 a + 2 c) + b) (-1 + z)^(-(1/2) + a - b) LegendreP[-(1/2) + a - c, 1/2 - a + b, 3, (1 + z)/(2 Sqrt[z])]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "c"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["b", ",", RowBox[List["b", "+", "c", "-", "a"]]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Abs", "[", "z", "]"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "c"]]]], ")"]]]], "+", "b"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", "b"]]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", "c"]], ",", RowBox[List[FractionBox["1", "2"], "-", "a", "+", "b"]], ",", "3", ",", FractionBox[RowBox[List["1", "+", "z"]], RowBox[List["2", " ", SqrtBox["z"]]]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mi> c </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> b </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]], RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;a&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;c&quot;, MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;b&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;c&quot;, &quot;-&quot;, &quot;a&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> z </mi> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> &#120083; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalP]&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <semantics> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> <annotation encoding='Mathematica'> TagBox[FractionBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, SqrtBox[&quot;z&quot;]]]], HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> <ci> c </ci> </list> <list /> </list> <list> <list /> <list> <ci> b </ci> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </list> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> UnitStep </ci> <apply> <plus /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> &#120083; </ci> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "c_"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["b_", ",", RowBox[List["b_", "+", "c_", "-", "a_"]]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Abs", "[", "z", "]"]]]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "c"]]]], ")"]]]], "+", "b"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", "b"]]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", "c"]], ",", RowBox[List[FractionBox["1", "2"], "-", "a", "+", "b"]], ",", "3", ",", FractionBox[RowBox[List["1", "+", "z"]], RowBox[List["2", " ", SqrtBox["z"]]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29