|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with m==0
Case {m,n,p,q}={0,2,2,2}
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.03.0109.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a, c}, {}}, {{}, {b, (1/2) (-1 + a + c)}}, z] ==
(-1 + z)^((1/4) (-1 + a - 2 b + c)) UnitStep[-1 + Abs[z]]
z^((1/4) (-1 + a + 2 b + c)) LegendreP[(1/2) (-1 + a - c),
b + (1/2) (1 - a - c), 3, -1 + 2 z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "c"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["b", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "c"]], ")"]]]]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "-", RowBox[List["2", " ", "b"]], "+", "c"]], ")"]]]]], RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Abs", "[", "z", "]"]]]], "]"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", RowBox[List["2", " ", "b"]], "+", "c"]], ")"]]]]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "-", "c"]], ")"]]]], ",", RowBox[List["b", "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "-", "c"]], ")"]]]]]], ",", "3", ",", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "z"]]]]]], "]"]], " "]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mi> c </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> b </mi> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["0", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox["c", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["b", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["a", "+", "c", "-", "1"]], "2"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> 𝔓 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreP] </annotation> </semantics> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <semantics> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List["2", " ", "z"]], "-", "1"]], HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> <ci> c </ci> </list> <list /> </list> <list> <list /> <list> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> UnitStep </ci> <apply> <plus /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> 𝔓 </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "c_"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["b_", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a_", "+", "c_"]], ")"]]]]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "-", RowBox[List["2", " ", "b"]], "+", "c"]], ")"]]]]], " ", RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Abs", "[", "z", "]"]]]], "]"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", RowBox[List["2", " ", "b"]], "+", "c"]], ")"]]]]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "-", "c"]], ")"]]]], ",", RowBox[List["b", "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "-", "c"]], ")"]]]]]], ",", "3", ",", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "z"]]]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|