Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
MeijerG






Mathematica Notation

Traditional Notation









Hypergeometric Functions > MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z] > Specific values > Specialized values > Cases with m==0 > Case {m,n,p,q}={0,2,2,2}





http://functions.wolfram.com/07.34.03.0127.01









  


  










Input Form





MeijerG[{{a, a + 1/2}, {}}, {{}, {b, 2 a - b - 1}}, z] == ((2 UnitStep[Abs[z] - 1])/((2 a - 2 b - 1) Sqrt[Pi])) z^(a - 1/2) Sin[(2 a - 2 b - 1) ArcCos[1/Sqrt[z]]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List["a", "+", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["b", ",", RowBox[List[RowBox[List["2", "a"]], "-", "b", "-", "1"]]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "-", "1"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "a"]], "-", RowBox[List["2", "b"]], "-", "1"]], ")"]], SqrtBox["\[Pi]"]]]], SuperscriptBox["z", RowBox[List["a", "-", FractionBox["1", "2"]]]], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "a"]], "-", RowBox[List["2", "b"]], "-", "1"]], ")"]], " ", RowBox[List["ArcCos", "[", FractionBox["1", SqrtBox["z"]], "]"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> b </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]], RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;a&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;b&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;a&quot;]], &quot;-&quot;, &quot;b&quot;, &quot;-&quot;, &quot;1&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> <list /> </list> <list> <list /> <list> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </list> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <plus /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <arccos /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", RowBox[List["a_", "+", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["b_", ",", RowBox[List[RowBox[List["2", " ", "a_"]], "-", "b_", "-", "1"]]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "-", "1"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["a", "-", FractionBox["1", "2"]]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", "b"]], "-", "1"]], ")"]], " ", RowBox[List["ArcCos", "[", FractionBox["1", SqrtBox["z"]], "]"]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", "b"]], "-", "1"]], ")"]], " ", SqrtBox["\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29