|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with m==0
Case {m,n,p,q}={0,3,4,2}
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.03.0212.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a, c, 2 b - c}, {2 b - a}}, {{}, {b, b - 1/2}}, z] ==
(-(Sqrt[Pi]/2)) z^(-1 + b) (BesselJ[-a + c, 1/Sqrt[z]]
BesselY[-a + 2 b - c, 1/Sqrt[z]] + BesselJ[-a + 2 b - c, 1/Sqrt[z]]
BesselY[-a + c, 1/Sqrt[z]]) /;
!IntervalMemberQ[Interval[{-Infinity, 0}], z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "c", ",", RowBox[List[RowBox[List["2", " ", "b"]], "-", "c"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", " ", "b"]], "-", "a"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["b", ",", RowBox[List["b", "-", FractionBox["1", "2"]]]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[SqrtBox["\[Pi]"], "2"]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "+", "c"]], ",", FractionBox["1", SqrtBox["z"]]]], "]"]], " ", RowBox[List["BesselY", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "c"]], ",", FractionBox["1", SqrtBox["z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "c"]], ",", FractionBox["1", SqrtBox["z"]]]], "]"]], " ", RowBox[List["BesselY", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "+", "c"]], ",", FractionBox["1", SqrtBox["z"]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", "0"]], "}"]], "]"]], ",", "z"]], "]"]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> b </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "2"]], RowBox[List["0", ",", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox["c", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "b"]], "-", "c"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "b"]], "-", "a"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["b", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["b", "-", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msqrt> <mi> π </mi> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> J </mi> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> Y </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <mi> J </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> Y </mi> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> z </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> b </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "2"]], RowBox[List["0", ",", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox["c", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "b"]], "-", "c"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "b"]], "-", "a"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["b", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["b", "-", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msqrt> <mi> π </mi> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> J </mi> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> Y </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <mi> J </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> Y </mi> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> z </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "c_", ",", RowBox[List[RowBox[List["2", " ", "b_"]], "-", "c_"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", " ", "b_"]], "-", "a_"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["b_", ",", RowBox[List["b_", "-", FractionBox["1", "2"]]]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", SqrtBox["\[Pi]"]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "+", "c"]], ",", FractionBox["1", SqrtBox["z"]]]], "]"]], " ", RowBox[List["BesselY", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "c"]], ",", FractionBox["1", SqrtBox["z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "c"]], ",", FractionBox["1", SqrtBox["z"]]]], "]"]], " ", RowBox[List["BesselY", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "+", "c"]], ",", FractionBox["1", SqrtBox["z"]]]], "]"]]]]]], ")"]]]], "/;", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", "0"]], "}"]], "]"]], ",", "z"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|