|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with m==1
Case {m,n,p,q}={1,1,2,4}
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.03.0351.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a}, {a}}, {{b}, {a, a - 1/2, 2 a - b - 1}}, z] ==
(z^(-(1/2) + a)/Sqrt[Pi]) Sin[(a - b) Pi] BesselI[1/2 - a + b, Sqrt[z]]^2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a", "}"]], ",", RowBox[List["{", "a", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "b", "}"]], ",", RowBox[List["{", RowBox[List["a", ",", RowBox[List["a", "-", FractionBox["1", "2"]]], ",", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "-", "1"]]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a"]]], " "]], SqrtBox["\[Pi]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "\[Pi]"]], "]"]], SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "a", "+", "b"]], ",", SqrtBox["z"]]], "]"]], "2"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> b </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "4"]], RowBox[List["1", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox["a", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["b", MeijerG, Rule[Editable, True]], ",", TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "-", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "-", "1"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <msub> <mi> I </mi> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> </list> <list> <ci> a </ci> </list> </list> <list> <list> <ci> b </ci> </list> <list> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </list> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <pi /> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a_", "}"]], ",", RowBox[List["{", "a_", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "b_", "}"]], ",", RowBox[List["{", RowBox[List["a_", ",", RowBox[List["a_", "-", FractionBox["1", "2"]]], ",", RowBox[List[RowBox[List["2", " ", "a_"]], "-", "b_", "-", "1"]]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a"]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "a", "+", "b"]], ",", SqrtBox["z"]]], "]"]], "2"]]], SqrtBox["\[Pi]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|