|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with m==1
Case {m,n,p,q}={1,2,3,5}
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.03.1090.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a, a + 1/2}, {b}}, {{-(1/2) + b}, {-1 + b, b, (b - 1)/2, b/2}},
z] == (-((2^(2 a - b) z^(-1 + b) Gamma[-1 - 2 a + 2 b])/
(Pi^(3/2) Gamma[b]))) (Hypergeometric1F1[-1 - 2 a + 2 b, b, -2 Sqrt[z]] -
Hypergeometric1F1[-1 - 2 a + 2 b, b, 2 Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List["a", "+", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", "b", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "b"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "b"]], ",", "b", ",", FractionBox[RowBox[List["b", "-", "1"]], "2"], " ", ",", FractionBox["b", "2"]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "b"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], "]"]], " "]], RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]], " ", RowBox[List["Gamma", "[", "b", "]"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ",", "b", ",", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]]], "]"]], "-", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ",", "b", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mi> b </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "5"]], RowBox[List["1", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox["b", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List["b", "-", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["b", "-", "1"]], MeijerG, Rule[Editable, True]], ",", TagBox["b", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["b", "-", "1"]], "2"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["b", "2"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "1"]], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["b", Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]], Hypergeometric1F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "1"]], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["b", Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox[RowBox[List["2", " ", SqrtBox["z"]]], Hypergeometric1F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> <list> <ci> b </ci> </list> </list> <list> <list> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Hypergeometric1F1 </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Hypergeometric1F1 </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", RowBox[List["a_", "+", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", "b_", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "b_"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "b_"]], ",", "b_", ",", FractionBox[RowBox[List["b_", "-", "1"]], "2"], ",", FractionBox["b_", "2"]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "b"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ",", "b", ",", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]]], "]"]], "-", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ",", "b", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], ")"]]]], RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]], " ", RowBox[List["Gamma", "[", "b", "]"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|