|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with m==1
Case {m,n,p,q}={1,4,4,4}
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.03.0603.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3],
Subscript[a, 4]}, {}}, {{0}, {Subscript[b, 1], Subscript[b, 2],
Subscript[b, 3]}}, -1] ==
((((-1)^(-2 + Subscript[b, 1]) Gamma[1 - Subscript[a, 1]]
Gamma[1 - Subscript[a, 2]] Gamma[1 - Subscript[a, 3]]
Gamma[1 - Subscript[a, 4]])/(Gamma[1 - Subscript[b, 1]]
Gamma[Subscript[b, 1]])) Sqrt[Gamma[Subscript[a, 1]]]
Sqrt[Gamma[Subscript[a, 2]]] Sqrt[Gamma[Subscript[a, 3]]]
Sqrt[Gamma[Subscript[a, 4]]]
Sqrt[Gamma[1 - Subscript[a, 1] + Subscript[b, 1]]]
Sqrt[Gamma[1 - Subscript[a, 2] + Subscript[b, 1]]]
Sqrt[Gamma[1 - Subscript[a, 3] + Subscript[b, 1]]]
Sqrt[Gamma[1 - Subscript[a, 4] + Subscript[b, 1]]]
SixJSymbol[{(1/2) (-2 + Subscript[a, 1] + Subscript[a, 4] -
Subscript[b, 3]), (1/2) (-2 + Subscript[a, 1] + Subscript[a, 3] -
Subscript[b, 2]), (1/2) (-Subscript[a, 1] - Subscript[a, 2] +
Subscript[b, 1])}, {(1/2) (-2 + Subscript[a, 2] + Subscript[a, 3] -
Subscript[b, 3]), (1/2) (-2 + Subscript[a, 2] + Subscript[a, 4] -
Subscript[b, 2]), (1/2) (-Subscript[a, 3] - Subscript[a, 4] +
Subscript[b, 1])}])/(Sqrt[Gamma[Subscript[a, 1] - Subscript[b, 2]]]
Sqrt[Gamma[Subscript[a, 2] - Subscript[b, 2]]]
Sqrt[Gamma[Subscript[a, 3] - Subscript[b, 2]]]
Sqrt[Gamma[Subscript[a, 4] - Subscript[b, 2]]]
Sqrt[Gamma[Subscript[a, 1] - Subscript[b, 3]]]
Sqrt[Gamma[Subscript[a, 2] - Subscript[b, 3]]]
Sqrt[Gamma[Subscript[a, 3] - Subscript[b, 3]]]
Sqrt[Gamma[Subscript[a, 4] - Subscript[b, 3]]]) /;
Subscript[a, 1] + Subscript[a, 2] + Subscript[a, 3] + Subscript[a, 4] -
Subscript[b, 1] - Subscript[b, 2] - Subscript[b, 3] == 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["b", "1"]]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "3"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "4"]]], "]"]], " "]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " "]]], " ", SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]]], SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]]], SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["a", "4"], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "4"], "+", SubscriptBox["b", "1"]]], "]"]]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "4"], "-", SubscriptBox["b", "3"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "3"], "-", SubscriptBox["b", "2"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "1"]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "-", SubscriptBox["b", "3"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "4"], "-", SubscriptBox["b", "2"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["a", "3"]]], "-", SubscriptBox["a", "4"], "+", SubscriptBox["b", "1"]]], ")"]]]]]], "}"]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "3"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "3"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "3"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "3"]]], "]"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"]]], "\[Equal]", "2"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["1", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["-", "1"]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mtext> </mtext> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mfrac> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["{", Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext>   </mtext> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mtext>   </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["}", Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⩵ </mo> <mn> 2 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> </list> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <ci> SixJSymbol </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["bb", "1"]]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "4"]]], "]"]]]], ")"]], " ", SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "4"], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "2"], "+", SubscriptBox["bb", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "3"], "+", SubscriptBox["bb", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "4"], "+", SubscriptBox["bb", "1"]]], "]"]]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["aa", "1"], "+", SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "3"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["aa", "1"], "+", SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "2"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["aa", "1"]]], "-", SubscriptBox["aa", "2"], "+", SubscriptBox["bb", "1"]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["aa", "2"], "+", SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "3"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SubscriptBox["aa", "2"], "+", SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "2"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["aa", "3"]]], "-", SubscriptBox["aa", "4"], "+", SubscriptBox["bb", "1"]]], ")"]]]]]], "}"]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["bb", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "3"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "3"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "3"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "3"]]], "]"]]]]], ")"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["aa", "2"], "+", SubscriptBox["aa", "3"], "+", SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"], "-", SubscriptBox["bb", "3"]]], "\[Equal]", "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|