|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with m==2
Case {m,n,p,q}={2,0,2,2}
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.03.0655.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{}, {a, c}}, {{b, -(1/2) + a - b + c}, {}}, z] ==
((2^(-(1/2) - a + 2 b - c) Gamma[1 - a + b] Gamma[1 + b - c])/
(Pi Sqrt[1 - z])) z^((1/4) (-1 + 2 a + 2 c)) UnitStep[1 - Abs[z]]
(LegendreP[-(1/2) - a + c, -(1/2) + a - 2 b + c, 2, -Sqrt[1 - z]] +
LegendreP[-(1/2) - a + c, -(1/2) + a - 2 b + c, 2, Sqrt[1 - z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["a", ",", "c"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["b", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", "b", "+", "c"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "a", "+", RowBox[List["2", " ", "b"]], "-", "c"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "+", "b"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "b", "-", "c"]], "]"]], " "]]]], RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]], SuperscriptBox["z", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "c"]]]], ")"]]]]], " ", RowBox[List["UnitStep", "[", RowBox[List["1", "-", RowBox[List["Abs", "[", "z", "]"]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "a", "+", "c"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", RowBox[List["2", " ", "b"]], "+", "c"]], ",", "2", ",", RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], "]"]], "+", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "a", "+", "c"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", RowBox[List["2", " ", "b"]], "+", "c"]], ",", "2", ",", SqrtBox[RowBox[List["1", "-", "z"]]]]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mi> c </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> b </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["2", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox["c", MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["b", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "-", "b", "+", "c", "-", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <semantics> <mrow> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <semantics> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <annotation encoding='Mathematica'> TagBox[SqrtBox[RowBox[List["1", "-", "z"]]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list /> <list> <ci> a </ci> <ci> c </ci> </list> </list> <list> <list> <ci> b </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </list> <list /> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> UnitStep </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["a_", ",", "c_"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["b_", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a_", "-", "b_", "+", "c_"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "a", "+", RowBox[List["2", " ", "b"]], "-", "c"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "+", "b"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "b", "-", "c"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "c"]]]], ")"]]]]], " ", RowBox[List["UnitStep", "[", RowBox[List["1", "-", RowBox[List["Abs", "[", "z", "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "a", "+", "c"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", RowBox[List["2", " ", "b"]], "+", "c"]], ",", "2", ",", RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], "]"]], "+", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "a", "+", "c"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "a", "-", RowBox[List["2", " ", "b"]], "+", "c"]], ",", "2", ",", SqrtBox[RowBox[List["1", "-", "z"]]]]], "]"]]]], ")"]]]], RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|