|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with m==3
Case {m,n,p,q}={3,1,3,3}
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.03.1028.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a}, {c, 2 c - a + 2}}, {{b, 1 - b + 2 c, 1/2 + c}, {}}, z] ==
(-((2^(2 (-1 + a - c)) Sqrt[Pi] Gamma[1 - a + b] Gamma[2 - a - b + 2 c])/
((1 - a + c) Gamma[1 - a + c]^2))) z^(-1 + a)
Hypergeometric2F1[(b - a + 1)/2, Hypergeometric2F1[c + 1 - (a + b)/2],
2 - a + c, -(1/z)] (-2 Hypergeometric2F1[(b - a + 1)/2,
Hypergeometric2F1[c + 1 - (a + b)/2], 1 - a + c, -(1/z)] +
Hypergeometric2F1[(b - a + 1)/2, Hypergeometric2F1[c + 1 - (a + b)/2],
2 - a + c, -(1/z)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a", "}"]], ",", RowBox[List["{", RowBox[List["c", ",", RowBox[List[RowBox[List["2", " ", "c"]], "-", "a", "+", "2"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["b", ",", RowBox[List["1", "-", "b", "+", RowBox[List["2", " ", "c"]]]], ",", RowBox[List[FractionBox["1", "2"], "+", "c"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "-", "c"]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "+", "b"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "a", "-", "b", "+", RowBox[List["2", " ", "c"]]]], "]"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "+", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "+", "c"]], "]"]], "2"]]]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a"]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["b", "-", "a", "+", "1"]], "2"], ",", TagBox[RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]], ",", RowBox[List["2", "-", "a", "+", "c"]], ",", RowBox[List["-", FractionBox["1", "z"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["b", "-", "a", "+", "1"]], "2"], ",", TagBox[RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]], ",", RowBox[List["1", "-", "a", "+", "c"]], ",", RowBox[List["-", FractionBox["1", "z"]]]]], "]"]]]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["b", "-", "a", "+", "1"]], "2"], ",", TagBox[RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]], ",", RowBox[List["2", "-", "a", "+", "c"]], ",", RowBox[List["-", FractionBox["1", "z"]]]]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> b </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "3"]], RowBox[List["3", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox["c", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "a", "+", "2"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["b", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", "b", "+", "1"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["c", "+", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["b", "-", "a", "+", "1"]], "2"], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["c", "-", "a", "+", "2"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", "z"]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["b", "-", "a", "+", "1"]], "2"], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[TagBox[RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["c", "-", "a", "+", "2"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", "z"]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["b", "-", "a", "+", "1"]], "2"], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["c", "-", "a", "+", "1"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", "z"]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> </list> <list> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </list> </list> <list> <list> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> <list /> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a_", "}"]], ",", RowBox[List["{", RowBox[List["c_", ",", RowBox[List[RowBox[List["2", " ", "c_"]], "-", "a_", "+", "2"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["b_", ",", RowBox[List["1", "-", "b_", "+", RowBox[List["2", " ", "c_"]]]], ",", RowBox[List[FractionBox["1", "2"], "+", "c_"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "-", "c"]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "+", "b"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "a", "-", "b", "+", RowBox[List["2", " ", "c"]]]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "a"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["b", "-", "a", "+", "1"]], ")"]]]], ",", RowBox[List["Hypergeometric2F1", "[", RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], "]"]], ",", RowBox[List["2", "-", "a", "+", "c"]], ",", RowBox[List["-", FractionBox["1", "z"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["b", "-", "a", "+", "1"]], ")"]]]], ",", RowBox[List["Hypergeometric2F1", "[", RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], "]"]], ",", RowBox[List["1", "-", "a", "+", "c"]], ",", RowBox[List["-", FractionBox["1", "z"]]]]], "]"]]]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["b", "-", "a", "+", "1"]], ")"]]]], ",", RowBox[List["Hypergeometric2F1", "[", RowBox[List["c", "+", "1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], "]"]], ",", RowBox[List["2", "-", "a", "+", "c"]], ",", RowBox[List["-", FractionBox["1", "z"]]]]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "a", "+", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "a", "+", "c"]], "]"]], "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|