| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 | 
| Hypergeometric Functions  MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]  Specific values  Specialized values  Cases with m==3  Case {m,n,p,q}={3,3,3,3}   |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.34.03.1052.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | MeijerG[{{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]}, {}}, 
   {{Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, {}}, z] == 
  Pi^2 (Csc[Pi (-Subscript[b, 1] + Subscript[b, 2])] 
     Csc[Pi (-Subscript[b, 1] + Subscript[b, 3])] 
     Gamma[1 - Subscript[a, 1] + Subscript[b, 1]] 
     Gamma[1 - Subscript[a, 2] + Subscript[b, 1]] 
     Gamma[1 - Subscript[a, 3] + Subscript[b, 1]] z^Subscript[b, 1] 
     HypergeometricPFQRegularized[{1 - Subscript[a, 1] + Subscript[b, 1], 
       1 - Subscript[a, 2] + Subscript[b, 1], 1 - Subscript[a, 3] + 
        Subscript[b, 1]}, {1 + Subscript[b, 1] - Subscript[b, 2], 
       1 + Subscript[b, 1] - Subscript[b, 3]}, -z] + 
    Csc[Pi (Subscript[b, 1] - Subscript[b, 2])] 
     Csc[Pi (-Subscript[b, 2] + Subscript[b, 3])] 
     Gamma[1 - Subscript[a, 1] + Subscript[b, 2]] 
     Gamma[1 - Subscript[a, 2] + Subscript[b, 2]] 
     Gamma[1 - Subscript[a, 3] + Subscript[b, 2]] z^Subscript[b, 2] 
     HypergeometricPFQRegularized[{1 - Subscript[a, 1] + Subscript[b, 2], 
       1 - Subscript[a, 2] + Subscript[b, 2], 1 - Subscript[a, 3] + 
        Subscript[b, 2]}, {1 - Subscript[b, 1] + Subscript[b, 2], 
       1 + Subscript[b, 2] - Subscript[b, 3]}, -z] + 
    Csc[Pi (Subscript[b, 1] - Subscript[b, 3])] 
     Csc[Pi (Subscript[b, 2] - Subscript[b, 3])] 
     Gamma[1 - Subscript[a, 1] + Subscript[b, 3]] 
     Gamma[1 - Subscript[a, 2] + Subscript[b, 3]] 
     Gamma[1 - Subscript[a, 3] + Subscript[b, 3]] z^Subscript[b, 3] 
     HypergeometricPFQRegularized[{1 - Subscript[a, 1] + Subscript[b, 3], 
       1 - Subscript[a, 2] + Subscript[b, 3], 1 - Subscript[a, 3] + 
        Subscript[b, 3]}, {1 - Subscript[b, 1] + Subscript[b, 3], 
       1 - Subscript[b, 2] + Subscript[b, 3]}, -z]) /; 
  !Element[Subscript[b, 2] - Subscript[b, 1], Integers] && 
   !Element[Subscript[b, 3] - Subscript[b, 1], Integers] && 
   !Element[Subscript[b, 3] - Subscript[b, 2], Integers] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", "   ", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", " ", RowBox[List[RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["b", "1"]]], "+", SubscriptBox["b", "2"]]], ")"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["b", "1"]]], "+", SubscriptBox["b", "3"]]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "1"]]], "]"]], " ", SuperscriptBox["z", SubscriptBox["b", "1"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "1"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", "  ", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["b", "2"]]], "+", SubscriptBox["b", "3"]]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "2"]]], "]"]], " ", SuperscriptBox["z", SubscriptBox["b", "2"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", "  ", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["b", "3"]]], ")"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"]]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "3"]]], "]"]], " ", SuperscriptBox["z", SubscriptBox["b", "3"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["b", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["b", "1"]]], ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["b", "1"]]], ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["b", "2"]]], ",", "Integers"]], "]"]], "]"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "3"]], RowBox[List["3", ",", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "1"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "1"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "1"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["b", "3"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mtext>    </mtext>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "3"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"], "+", SubscriptBox["b", "3"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"], "+", SubscriptBox["b", "3"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["b", "3"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> MeijerG </ci>  <list>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  <list />  </list>  <list>  <list>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  <list />  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <csc />  <apply>  <times />  <pi />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <csc />  <apply>  <times />  <pi />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <csc />  <apply>  <times />  <pi />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <csc />  <apply>  <times />  <pi />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <csc />  <apply>  <times />  <pi />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <csc />  <apply>  <times />  <pi />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <notin />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <integers />  </apply>  <apply>  <notin />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <integers />  </apply>  <apply>  <notin />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <integers />  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["bb", "1"]]], "+", SubscriptBox["bb", "2"]]], ")"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["bb", "1"]]], "+", SubscriptBox["bb", "3"]]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "2"], "+", SubscriptBox["bb", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "3"], "+", SubscriptBox["bb", "1"]]], "]"]], " ", SuperscriptBox["z", SubscriptBox["bb", "1"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "2"], "+", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "3"], "+", SubscriptBox["bb", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["bb", "2"]]], "+", SubscriptBox["bb", "3"]]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "2"], "+", SubscriptBox["bb", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "3"], "+", SubscriptBox["bb", "2"]]], "]"]], " ", SuperscriptBox["z", SubscriptBox["bb", "2"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "2"], "+", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "3"], "+", SubscriptBox["bb", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "2"], "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "3"]]], ")"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["bb", "3"]]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "2"], "+", SubscriptBox["bb", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["aa", "3"], "+", SubscriptBox["bb", "3"]]], "]"]], " ", SuperscriptBox["z", SubscriptBox["bb", "3"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "2"], "+", SubscriptBox["bb", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "3"], "+", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["bb", "2"], "+", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["bb", "1"]]], "\[Element]", "Integers"]]]], "&&", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["bb", "3"], "-", SubscriptBox["bb", "1"]]], "\[Element]", "Integers"]]]], "&&", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["bb", "3"], "-", SubscriptBox["bb", "2"]]], "\[Element]", "Integers"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] |  |  | 
 | 
 
 | 
 |