|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Specific values
Specialized values
Cases with m==4
Case {m,n,p,q}={4,1,2,4}
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.03.1064.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a}, {a + 1/2}}, {{a - 1/2, a - 1/4, a, a + 1/4}, {}}, z] ==
Sqrt[2] Pi^2 z^(a - 1/2) Erfc[Sqrt[2] (-z)^(1/4)]
(1 - (Sqrt[-Sqrt[-z]] Erfi[Sqrt[2] (-z)^(1/4)])/(-z)^(1/4))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a", "}"]], ",", RowBox[List["{", RowBox[List["a", "+", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", FractionBox["1", "2"]]], ",", RowBox[List["a", "-", FractionBox["1", "4"]]], ",", "a", ",", RowBox[List["a", "+", FractionBox["1", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["a", "-", FractionBox["1", "2"]]]], RowBox[List["Erfc", "[", RowBox[List[SqrtBox["2"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SqrtBox[RowBox[List["-", "z"]]]]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "4"]], RowBox[List["4", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List["a", "-", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "-", FractionBox["1", "4"]]], MeijerG, Rule[Editable, True]], ",", TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "4"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mtext> </mtext> </mrow> <mroot> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> </list> <list> <list> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </list> <list /> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfc </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a_", "}"]], ",", RowBox[List["{", RowBox[List["a_", "+", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a_", "-", FractionBox["1", "2"]]], ",", RowBox[List["a_", "-", FractionBox["1", "4"]]], ",", "a_", ",", RowBox[List["a_", "+", FractionBox["1", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["a", "-", FractionBox["1", "2"]]]], " ", RowBox[List["Erfc", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SqrtBox[RowBox[List["-", "z"]]]]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|