  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
Hypergeometric Functions
 
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
 
Series representations
 
Asymptotic series  expansions at z==infinity for q>p
 
Expansions for q==p+2
 
 | 
 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.34.06.0031.02
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]}, 
    {Subscript[a, n + 1], \[Ellipsis], Subscript[a, p]}}, 
   {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
    {Subscript[b, m + 1], \[Ellipsis], Subscript[b, p + 2]}}, 
   z] \[Proportional] 
  Pi^(m + n - p) Sum[(Product[Sin[(Subscript[a, j] - Subscript[b, k]) Pi], 
        {j, n + 1, p}]/Product[If[j == k, 1, 
         Sin[Pi (Subscript[b, j] - Subscript[b, k])]], {j, 1, m}]) 
      z^Subscript[b, k] 
      Sum[(Product[If[s == i, 1, Gamma[Subscript[a, i] - Subscript[a, s]]], 
          {s, 1, p}]/(Sin[(Subscript[a, i] - Subscript[b, k]) Pi] 
          Product[Gamma[Subscript[a, i] - Subscript[b, s]], {s, 1, p + 2}])) 
        ((-1)^(p - m - n - 1) z)^(Subscript[a, i] - Subscript[b, k] - 1) 
        (1 + O[1/z]), {i, 1, p}], {k, 1, m}] + (Pi^(m + n - p - 3/2)/2) 
    Sum[(Product[Sin[(Subscript[a, j] - Subscript[b, k]) Pi], {j, n + 1, p}]/
       Product[If[j == k, 1, Sin[Pi (Subscript[b, j] - Subscript[b, k])]], 
        {j, 1, m}]) z^Subscript[b, k] ((-1)^(p - m - n - 1) z)^
       (\[Chi] - Subscript[b, k]) 
      (E^(I ((\[Chi] - Subscript[b, k]) Pi + 2 Sqrt[(-1)^(p - m - n - 1) z])) 
        (1 + O[1/Sqrt[(-1)^(p - m - n - 1) z]]) + 
       (1 + O[1/Sqrt[(-1)^(p - m - n - 1) z]])/
        E^(I ((\[Chi] - Subscript[b, k]) Pi + 
           2 Sqrt[(-1)^(p - m - n - 1) z]))), {k, 1, m}] /; 
 (Abs[z] -> Infinity) && \[Chi] == 
   (1/2) (Sum[Subscript[b, j], {j, 1, p + 2}] - Sum[Subscript[a, j], 
      {j, 1, p}] - 1/2) && ForAll[{j, k}, Element[{j, k}, Integers] && 
    j != k && 1 <= j <= n && 1 <= k <= n, 
    !Element[Subscript[a, j] - Subscript[a, k], Integers]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["p", "+", "2"]]]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", " ", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "k"]]], ")"]], "\[Pi]"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]]]], "]"]]]]], SuperscriptBox["z", SubscriptBox["b", "k"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "p"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["s", "=", "1"]], "p"], RowBox[List["If", "[", RowBox[List[RowBox[List["s", "\[Equal]", "i"]], ",", "1", ",", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["a", "s"]]], "]"]]]], "]"]]]], RowBox[List[RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["b", "k"]]], ")"]], "\[Pi]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["s", "=", "1"]], RowBox[List["p", "+", "2"]]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["b", "s"]]], "]"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["b", "k"], "-", "1"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]]]]]]]], "+", "  ", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", FractionBox["3", "2"]]]], "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "k"]]], ")"]], "\[Pi]"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]]]], "]"]]]]], SuperscriptBox["z", SubscriptBox["b", "k"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List["\[Chi]", "-", SubscriptBox["b", "k"]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[Chi]", " ", "-", SubscriptBox["b", "k"]]], ")"]], "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]]]], ")"]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[Chi]", " ", "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]]]], ")"]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "+", "2"]]], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "-", FractionBox["1", "2"]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "n"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "n"]]]]]]], RowBox[List["(", "\[InvisibleSpace]", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]], ")"]]]], ")"]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> p </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", RowBox[List["p", "+", "2"]]]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["p", "+", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> ∝ </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> i </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mtext>   </mtext>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> s </mi>  <mo> ≠ </mo>  <mi> i </mi>  </mrow>  </munder>  <mi> p </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> i </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> s </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> i </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> i </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> s </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <msub>  <mi> a </mi>  <mi> i </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> χ </mi>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> p </mi>  </munderover>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mo> ∀ </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> j </mi>  <mo> ≤ </mo>  <mi> n </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> k </mi>  <mo> ≤ </mo>  <mi> n </mi>  </mrow>  </mrow>  </mrow>  </msub>  <mrow>  <mo> ( </mo>  <mrow>  <mo> ¬ </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <mrow>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> p </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", RowBox[List["p", "+", "2"]]]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["p", "+", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> ∝ </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> i </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mtext>   </mtext>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> s </mi>  <mo> ≠ </mo>  <mi> i </mi>  </mrow>  </munder>  <mi> p </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> i </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> s </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> i </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> i </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> s </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <msub>  <mi> a </mi>  <mi> i </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> χ </mi>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> p </mi>  </munderover>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mo> ∀ </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> j </mi>  <mo> ≤ </mo>  <mi> n </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> k </mi>  <mo> ≤ </mo>  <mi> n </mi>  </mrow>  </mrow>  </mrow>  </msub>  <mrow>  <mo> ( </mo>  <mrow>  <mo> ¬ </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "n_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a_", RowBox[List["n_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "m_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", RowBox[List["m_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", RowBox[List["p_", "+", "2"]]]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", SubscriptBox["b", "k"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "p"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["s", "=", "1"]], "p"], RowBox[List["If", "[", RowBox[List[RowBox[List["s", "\[Equal]", "i"]], ",", "1", ",", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "i"], "-", SubscriptBox["aa", "s"]]], "]"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List[SubscriptBox["aa", "i"], "-", SubscriptBox["b", "k"], "-", "1"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List[RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["aa", "i"], "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["s", "=", "1"]], RowBox[List["p", "+", "2"]]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "i"], "-", SubscriptBox["bb", "s"]]], "]"]]]]]]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]]]], "]"]]]]]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", FractionBox["3", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", SubscriptBox["b", "k"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List["\[Chi]", "-", SubscriptBox["b", "k"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[Chi]", "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["1", "2"]]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[Chi]", "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["1", "2"]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]]]], "]"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "+", "2"]]], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "-", FractionBox["1", "2"]]], ")"]]]]]], "&&", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "n"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "n"]]]]]]], RowBox[List["(", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]]]], ")"]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] |  |   |  
  |  
  
  
  
 |  
 
 |