  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
Hypergeometric Functions
 
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
 
Series representations
 
General formulas of asymptotic series expansions
 
 | 
 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.34.06.0039.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]}, 
    {Subscript[a, n + 1], \[Ellipsis], Subscript[a, p]}}, 
   {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
    {Subscript[b, m + 1], \[Ellipsis], Subscript[b, q]}}, z] \[Proportional] 
  AsymptoticMeijerGSeries[Power][{{Subscript[a, 1], \[Ellipsis], 
      Subscript[a, n]}, {Subscript[a, n + 1], \[Ellipsis], Subscript[a, p]}}, 
    {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
     {Subscript[b, m + 1], \[Ellipsis], Subscript[b, q]}}, 
    {z, ComplexInfinity, Infinity}] + KroneckerDelta[q, p + 1] 
    AsymptoticMeijerGSeries[Exp][{{Subscript[a, 1], \[Ellipsis], 
       Subscript[a, n]}, {Subscript[a, n + 1], \[Ellipsis], 
       Subscript[a, p]}}, {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
      {Subscript[b, m + 1], \[Ellipsis], Subscript[b, p + 1]}}, 
     {z, ComplexInfinity, Infinity}] + KroneckerDelta[q, p + 2] 
    AsymptoticMeijerGSeries[Trig][{{Subscript[a, 1], \[Ellipsis], 
       Subscript[a, n]}, {Subscript[a, n + 1], \[Ellipsis], 
       Subscript[a, p]}}, {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
      {Subscript[b, m + 1], \[Ellipsis], Subscript[b, p + 2]}}, 
     {z, ComplexInfinity, Infinity}] + 
   (UnitStep[q - p - 2] - KroneckerDelta[q, p + 2] - 
     KroneckerDelta[q, p + 1]) (1 - KroneckerDelta[q, p + 1]) 
    AsymptoticMeijerGSeries[Hyp][{{Subscript[a, 1], \[Ellipsis], 
       Subscript[a, n]}, {Subscript[a, n + 1], \[Ellipsis], 
       Subscript[a, p]}}, {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
      {Subscript[b, m + 1], \[Ellipsis], Subscript[b, q]}}, 
     {z, ComplexInfinity, Infinity}] /; (Abs[z] -> Infinity) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["AsymptoticMeijerGSeries", "[", "Power", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]], RowBox[List[RowBox[List["AsymptoticMeijerGSeries", "[", "Exp", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["p", "+", "1"]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "2"]]]], "]"]], RowBox[List[RowBox[List["AsymptoticMeijerGSeries", "[", "Trig", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["p", "+", "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["q", "-", "p", "-", "2"]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "2"]]]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["1", "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], RowBox[List[RowBox[List["AsymptoticMeijerGSeries", "[", "Hyp", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]]], "/;", "\[InvisibleSpace]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <semantics>  <mi> G </mi>  <annotation encoding='Mathematica'> TagBox["G", MeijerG] </annotation>  </semantics>  <mrow>  <mi> p </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <semantics>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <mo> … </mo>  <annotation encoding='Mathematica'> TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <mo> … </mo>  <annotation encoding='Mathematica'> TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <semantics>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <mo> … </mo>  <annotation encoding='Mathematica'> TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <mo> … </mo>  <annotation encoding='Mathematica'> TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ∝ </mo>  <mrow>  <mrow>  <msubsup>  <mi> 𝒜 </mi>  <mi> G </mi>  <mrow>  <mo> ( </mo>  <mi> power </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ⁢ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mi> z </mi>  <mo> , </mo>  <mover>  <mi> ∞ </mi>  <mo> ~ </mo>  </mover>  <mo> , </mo>  <mi> ∞ </mi>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> 𝒜 </mi>  <mi> G </mi>  <mrow>  <mo> ( </mo>  <mi> exp </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ⁢ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mi> z </mi>  <mo> , </mo>  <mover>  <mi> ∞ </mi>  <mo> ~ </mo>  </mover>  <mo> , </mo>  <mi> ∞ </mi>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> 𝒜 </mi>  <mi> G </mi>  <mrow>  <mo> ( </mo>  <mi> trig </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ⁢ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mi> z </mi>  <mo> , </mo>  <mover>  <mi> ∞ </mi>  <mo> ~ </mo>  </mover>  <mo> , </mo>  <mi> ∞ </mi>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> θ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> UnitStep </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> 𝒜 </mi>  <mi> G </mi>  <mrow>  <mo> ( </mo>  <mi> hyp </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  <mo> ; </mo>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ⁢ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mi> z </mi>  <mo> , </mo>  <mover>  <mi> ∞ </mi>  <mo> ~ </mo>  </mover>  <mo> , </mo>  <mi> ∞ </mi>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> FormBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <apply>  <ci> TagBox </ci>  <ms> G </ms>  <ci> MeijerG </ci>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> p </ms>  <ms> , </ms>  <ms> q </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> , </ms>  <ms> n </ms>  </list>  </apply>  </apply>  <ms> ⁡ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> z </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> ❘ </ms>  <apply>  <ci> GridBox </ci>  <list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <ms> … </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> n </ms>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> n </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <ms> … </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> p </ms>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <ms> … </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> m </ms>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <ms> … </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> q </ms>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </list>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> ∝ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <ms> 𝒜 </ms>  <ms> G </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <ms> power </ms>  <ms> ) </ms>  </list>  </apply>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> GridBox </ci>  <list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> n </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> n </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> p </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  </list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> m </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> q </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  </list>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> z </ms>  <ms> , </ms>  <apply>  <ci> OverscriptBox </ci>  <ms> ∞ </ms>  <ms> ~ </ms>  </apply>  <ms> , </ms>  <ms> ∞ </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> InterpretationBox </ci>  <ms> δ </ms>  <ci> KroneckerDelta </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  <apply>  <ci> Rule </ci>  <ci> Selectable </ci>  <false />  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> p </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <ms> 𝒜 </ms>  <ms> G </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <ms> exp </ms>  <ms> ) </ms>  </list>  </apply>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> GridBox </ci>  <list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> n </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> n </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> p </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  </list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> m </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> p </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  </list>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> z </ms>  <ms> , </ms>  <apply>  <ci> OverscriptBox </ci>  <ms> ∞ </ms>  <ms> ~ </ms>  </apply>  <ms> , </ms>  <ms> ∞ </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> InterpretationBox </ci>  <ms> δ </ms>  <ci> KroneckerDelta </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  <apply>  <ci> Rule </ci>  <ci> Selectable </ci>  <false />  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> p </ms>  <ms> + </ms>  <ms> 2 </ms>  </list>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <ms> 𝒜 </ms>  <ms> G </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <ms> trig </ms>  <ms> ) </ms>  </list>  </apply>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> GridBox </ci>  <list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> n </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> n </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> p </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  </list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> m </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> p </ms>  <ms> + </ms>  <ms> 2 </ms>  </list>  </apply>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  </list>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> z </ms>  <ms> , </ms>  <apply>  <ci> OverscriptBox </ci>  <ms> ∞ </ms>  <ms> ~ </ms>  </apply>  <ms> , </ms>  <ms> ∞ </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> InterpretationBox </ci>  <ms> δ </ms>  <ci> KroneckerDelta </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  <apply>  <ci> Rule </ci>  <ci> Selectable </ci>  <false />  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> p </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </list>  </apply>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> InterpretationBox </ci>  <ms> θ </ms>  <ci> UnitStep </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  <apply>  <ci> Rule </ci>  <ci> Selectable </ci>  <false />  </apply>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> - </ms>  <ms> p </ms>  <ms> - </ms>  <ms> 2 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> InterpretationBox </ci>  <ms> δ </ms>  <ci> KroneckerDelta </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  <apply>  <ci> Rule </ci>  <ci> Selectable </ci>  <false />  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> p </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </list>  </apply>  </apply>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> InterpretationBox </ci>  <ms> δ </ms>  <ci> KroneckerDelta </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  <apply>  <ci> Rule </ci>  <ci> Selectable </ci>  <false />  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> p </ms>  <ms> + </ms>  <ms> 2 </ms>  </list>  </apply>  </list>  </apply>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <ms> 𝒜 </ms>  <ms> G </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <ms> hyp </ms>  <ms> ) </ms>  </list>  </apply>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> GridBox </ci>  <list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> n </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> n </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> p </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  </list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> m </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> q </ms>  </apply>  <ms> ; </ms>  </list>  </apply>  </list>  </apply>  </list>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> z </ms>  <ms> , </ms>  <apply>  <ci> OverscriptBox </ci>  <ms> ∞ </ms>  <ms> ~ </ms>  </apply>  <ms> , </ms>  <ms> ∞ </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> /; </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms>  </ms>  <ms> z </ms>  <ms>  </ms>  </list>  </apply>  <ms>  </ms>  <ms> ∞ </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ci> TraditionalForm </ci>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "n_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a_", RowBox[List["n_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "m_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", RowBox[List["m_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["AsymptoticMeijerGSeries", "[", "Power", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "q"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]], " ", RowBox[List[RowBox[List["AsymptoticMeijerGSeries", "[", "Exp", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["p", "+", "1"]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "2"]]]], "]"]], " ", RowBox[List[RowBox[List["AsymptoticMeijerGSeries", "[", "Trig", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["p", "+", "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["q", "-", "p", "-", "2"]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "2"]]]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], " ", RowBox[List[RowBox[List["AsymptoticMeijerGSeries", "[", "Hyp", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "q"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] |  |   |  
  |  
  
  
  
 |  
 
 |