| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 | 
| Hypergeometric Functions  MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]  Series representations  Main terms of asymptotic expansions  Expansions at z==(-1)m+n-q for p==q   |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.34.06.0042.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]}, 
    {Subscript[a, n + 1], \[Ellipsis], Subscript[a, q]}}, 
   {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
    {Subscript[b, m + 1], \[Ellipsis], Subscript[b, q]}}, z] \[Proportional] 
  c (1 + O[z - (-1)^(m + n - q)]) + 
   d (1 - (-1)^(q - m - n)/z)^Subscript[\[Psi], q] 
    (1 + O[z - (-1)^(m + n - q)]) /; (z -> (-1)^(m + n - q)) && Abs[z] > 1 && 
  Subscript[\[Psi], q] == Sum[Subscript[a, j] - Subscript[b, j], {j, 1, q}] - 
    1 && c == MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]}, 
     {Subscript[a, n + 1], \[Ellipsis], Subscript[a, q]}}, 
    {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
     {Subscript[b, m + 1], \[Ellipsis], Subscript[b, q]}}, 
    (-1)^(m + n - q)] && d == Pi^(m + n - q - 1) Gamma[-Subscript[\[Psi], q]] 
    Sum[(Product[Sin[(Subscript[a, h] - Subscript[b, k]) Pi], {k, m + 1, q}]/
       Product[If[k == h, 1, Sin[(Subscript[a, h] - Subscript[a, k]) Pi]], 
        {k, 1, n}]) E^((m + n - q) Pi I (1 - Subscript[a, h])), {h, 1, n}] && 
   !Element[Subscript[\[Psi], q], Integers] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "q"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["c", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]]]], "]"]]]], ")"]]]], "+", RowBox[List["d", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["q", "-", "m", "-", "n"]]], "z"]]], ")"]], SubscriptBox["\[Psi]", "q"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]]]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "->", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]]]], ")"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], ">", "1"]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "j"]]], ")"]]]], "-", "1"]]]], "\[And]", RowBox[List["c", "\[Equal]", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "q"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]]]], "]"]]]], "\[And]", RowBox[List["d", "\[Equal]", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "q", "-", "1"]]], RowBox[List["Gamma", "[", RowBox[List["-", SubscriptBox["\[Psi]", "q"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "1"]], "n"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["m", "+", "1"]]]], "q"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "h"], "-", SubscriptBox["b", "k"]]], " ", ")"]], "\[Pi]"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List["If", "[", RowBox[List[RowBox[List["k", "\[Equal]", "h"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "h"], "-", SubscriptBox["a", "k"]]], ")"]], "\[Pi]"]], "]"]]]], "]"]]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "n", "-", "q"]], ")"]], "\[Pi]", " ", "\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "-", " ", SubscriptBox["a", "h"]]], ")"]]]]]]]]]]]]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[SubscriptBox["\[Psi]", "q"], ",", "Integers"]], "]"]], "]"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["q", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "q"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  <mo> ∝ </mo>  <mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mi> z </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> > </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> ⩵ </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> c </mi>  <mo> ⩵ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  </msup>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["q", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "q"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> d </mi>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mtext>   </mtext>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mtext>   </mtext>  <msub>  <mi> a </mi>  <mi> h </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> h </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> ≠ </mo>  <mi> h </mi>  </mrow>  </munder>  <mi> n </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> h </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <mrow>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["q", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "q"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  <mo> ∝ </mo>  <mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mi> z </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> > </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> ⩵ </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> c </mi>  <mo> ⩵ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  </msup>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["q", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "q"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> d </mi>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mtext>   </mtext>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mtext>   </mtext>  <msub>  <mi> a </mi>  <mi> h </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> h </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> ≠ </mo>  <mi> h </mi>  </mrow>  </munder>  <mi> n </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> h </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "n_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a_", RowBox[List["n_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "q_"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "m_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", RowBox[List["m_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]]]], "]"]]]], ")"]]]], "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["q", "-", "m", "-", "n"]]], "z"]]], ")"]], SubscriptBox["\[Psi]", "q"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]]]], ")"]], "&&", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], ">", "1"]], "&&", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "j"]]], ")"]]]], "-", "1"]]]], "&&", RowBox[List["c", "\[Equal]", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "q"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "n", "-", "q"]]]]], "]"]]]], "&&", RowBox[List["d", "\[Equal]", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "q", "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List["-", SubscriptBox["\[Psi]", "q"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["m", "+", "1"]]]], "q"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "h"], "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "n", "-", "q"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SubscriptBox["a", "h"]]], ")"]]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List["If", "[", RowBox[List[RowBox[List["k", "\[Equal]", "h"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "h"], "-", SubscriptBox["a", "k"]]], ")"]], " ", "\[Pi]"]], "]"]]]], "]"]]]]]]]]]]], "&&", RowBox[List["!", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Element]", "Integers"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] |  |  | 
 | 
 
 | 
 |