  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
Hypergeometric Functions
 
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
 
Series representations
 
Main terms of asymptotic expansions
 
Expansions at z==infinity
 
 | 
 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.34.06.0044.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]}, 
    {Subscript[a, n + 1], \[Ellipsis], Subscript[a, p]}}, 
   {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
    {Subscript[b, m + 1], \[Ellipsis], Subscript[b, q]}}, z] \[Proportional] 
  Sum[((Product[If[j == k, 1, Gamma[Subscript[a, k] - Subscript[a, j]]], 
        {j, 1, n}] Product[Gamma[1 + Subscript[b, j] - Subscript[a, k]], 
        {j, 1, m}])/(Product[Gamma[Subscript[a, k] - Subscript[b, j]], 
        {j, m + 1, q}] Product[Gamma[1 + Subscript[a, j] - Subscript[a, k]], 
        {j, n + 1, p}])) z^(Subscript[a, k] - 1) (1 + O[1/z]), {k, 1, n}] + 
   KroneckerDelta[q, p + 1] Subscript[d, 1] + KroneckerDelta[q, p + 2] 
    Subscript[d, 2] + (UnitStep[q - p - 2] - KroneckerDelta[q, p + 2] - 
     KroneckerDelta[q, p + 1]) (1 - KroneckerDelta[q, p + 1]) 
    Subscript[d, 3] /; (Abs[z] -> Infinity) && \[Beta] == q - p && 
  Subscript[d, 1] == Pi^(m + n - p - 1) Exp[(-1)^(p - m - n) z] 
    Sum[(Product[Sin[Pi (Subscript[a, j] - Subscript[b, r])], {j, n + 1, p}]/
       Product[If[j == r, 1, Sin[Pi (Subscript[b, j] - Subscript[b, r])]], 
        {j, 1, m}]) z^Subscript[b, r] ((-1)^(p - m - n) z)^
       (\[Chi] - Subscript[b, r]) (1 + O[1/z]), {r, 1, m}] && 
  Subscript[d, 2] == Pi^(m + n - p - 3/2) 
    Sum[(Product[Sin[Pi (Subscript[a, j] - Subscript[b, r])], {j, n + 1, p}]/
       Product[If[j == r, 1, Sin[Pi (Subscript[b, j] - Subscript[b, r])]], 
        {j, 1, m}]) z^Subscript[b, r] ((-1)^(p - m - n - 1) z)^
       (\[Chi] - Subscript[b, r]) Cos[2 Sqrt[(-1)^(p - m - n - 1) z] + 
        Pi (\[Chi] - Subscript[b, r])] (1 + O[1/Sqrt[z]]), {r, 1, m}] && 
  Subscript[d, 3] == ((2 (2 Pi)^((1 - \[Beta])/2) Pi^(m + n - p - 1))/
     Sqrt[\[Beta]]) Exp[\[Beta] Cos[(Pi (p - m - n))/\[Beta]] z^(1/\[Beta])] 
    Sum[(Product[Sin[Pi (Subscript[a, j] - Subscript[b, r])], {j, n + 1, p}]/
       Product[If[j == r, 1, Sin[Pi (Subscript[b, j] - Subscript[b, r])]], 
        {j, 1, m}]) Cos[Pi (p - m - n) (\[Chi] - Subscript[b, r]) + 
        \[Beta] Sin[(Pi (p - m - n))/\[Beta]] z^(1/\[Beta])] 
      (1 + O[1/z^(1/\[Beta])]), {r, 1, m}] && 
  \[Chi] == (1/\[Beta]) (Sum[Subscript[b, j], {j, 1, q}] - 
     Sum[Subscript[a, j], {j, 1, p}] + (1 - \[Beta])/2) && 
  ForAll[{j, k}, Element[{j, k}, Integers] && j != k && 1 <= j <= n && 
    1 <= k <= n,  !Element[Subscript[a, j] - Subscript[a, k], Integers]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "n"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "-", SubscriptBox["a", "j"]]], "]"]]]], "]"]]]], " ", ")"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["b", "j"], "-", SubscriptBox["a", "k"]]], "]"]], " "]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["m", "+", "1"]]]], "q"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "-", SubscriptBox["b", "j"]]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "]"]]]]]]], SuperscriptBox["z", RowBox[List[SubscriptBox["a", "k"], "-", "1"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]], SubscriptBox["d", "1"]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "2"]]]], "]"]], SubscriptBox["d", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["q", "-", "p", "-", "2"]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "2"]]]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["1", "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], SubscriptBox["d", "3"]]]]]]], "/;", "\[InvisibleSpace]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Beta]", "\[Equal]", RowBox[List["q", "-", "p"]]]], "\[And]", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", "1"]]], RowBox[List["Exp", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n"]]], " ", "z"]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "m"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]], " "]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "r"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], "]"]]]]], SuperscriptBox["z", SubscriptBox["b", "r"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n"]]], " ", "z"]], ")"]], RowBox[List["\[Chi]", "-", SubscriptBox["b", "r"]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["d", "2"], "\[Equal]", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", FractionBox["3", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "m"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]], " "]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "r"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], "]"]]]]], SuperscriptBox["z", SubscriptBox["b", "r"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List["\[Chi]", "-", SubscriptBox["b", "r"]]]], RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Chi]", "-", SubscriptBox["b", "r"]]], ")"]]]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SqrtBox["z"]], "]"]]]], ")"]]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["d", "3"], "\[Equal]", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], FractionBox[RowBox[List["1", "-", "\[Beta]"]], "2"]], " ", SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", "1"]]]]]]], SqrtBox["\[Beta]"]], RowBox[List["Exp", "[", RowBox[List["\[Beta]", " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", RowBox[List["(", RowBox[List["p", "-", "m", "-", "n"]], ")"]]]], "\[Beta]"], "]"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "\[Beta]"]]]]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "m"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]], " "]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "r"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], "]"]]]]], RowBox[List["Cos", "[", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["p", "-", "m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Chi]", "-", SubscriptBox["b", "r"]]], ")"]]]], "+", RowBox[List["\[Beta]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", RowBox[List["(", RowBox[List["p", "-", "m", "-", "n"]], ")"]]]], "\[Beta]"], "]"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "\[Beta]"]]]]]]], ")"]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", RowBox[List[" ", SuperscriptBox["z", RowBox[List["1", "/", "\[Beta]"]]]]]], "]"]]]], ")"]]]]]]]]]], "\[And]", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "\[Beta]"], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "+", FractionBox[RowBox[List["1", "-", "\[Beta]"]], "2"]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "n"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "n"]]]]]]], RowBox[List["(", "\[InvisibleSpace]", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]], ")"]]]], ")"]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> p </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> ∝ </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mtext>   </mtext>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  </munder>  <mi> n </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> d </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> d </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> θ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> UnitStep </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mi> q </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <mi> d </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> β </mi>  <mo> ⩵ </mo>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mi> p </mi>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> d </mi>  <mn> 1 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> r </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> d </mi>  <mn> 2 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> r </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mi> z </mi>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> d </mi>  <mn> 3 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <msqrt>  <mi> β </mi>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> β </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> β </mi>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 1 </mn>  <mo> / </mo>  <mi> β </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> r </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> β </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> β </mi>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 1 </mn>  <mo> / </mo>  <mi> β </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mrow>  <mn> 1 </mn>  <mo> / </mo>  <mi> β </mi>  </mrow>  </msup>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> χ </mi>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> β </mi>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> p </mi>  </munderover>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mo> ∀ </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> j </mi>  <mo> ≤ </mo>  <mi> n </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> k </mi>  <mo> ≤ </mo>  <mi> n </mi>  </mrow>  </mrow>  </mrow>  </msub>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <mrow>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> p </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  <mo> ∝ </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mtext>   </mtext>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  </munder>  <mi> n </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> d </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> d </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> θ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> UnitStep </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mi> q </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  <mo> - </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> q </mi>  <mo> , </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <mi> d </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> β </mi>  <mo> ⩵ </mo>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mi> p </mi>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> d </mi>  <mn> 1 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> r </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> d </mi>  <mn> 2 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> r </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mi> z </mi>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> d </mi>  <mn> 3 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <msqrt>  <mi> β </mi>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> β </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> β </mi>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 1 </mn>  <mo> / </mo>  <mi> β </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mrow>  <mtext>   </mtext>  <mo> ∏ </mo>  </mrow>  <munder>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> r </mi>  </mrow>  </munder>  <mi> m </mi>  </munderover>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> χ </mi>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> r </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> β </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> m </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> β </mi>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 1 </mn>  <mo> / </mo>  <mi> β </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mrow>  <mn> 1 </mn>  <mo> / </mo>  <mi> β </mi>  </mrow>  </msup>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> χ </mi>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> β </mi>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> β </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> p </mi>  </munderover>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mo> ∀ </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> j </mi>  <mo> ≤ </mo>  <mi> n </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> k </mi>  <mo> ≤ </mo>  <mi> n </mi>  </mrow>  </mrow>  </mrow>  </msub>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "n_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a_", RowBox[List["n_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "m_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", RowBox[List["m_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "n"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "-", SubscriptBox["a", "j"]]], "]"]]]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["b", "j"], "-", SubscriptBox["a", "k"]]], "]"]]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[SubscriptBox["a", "k"], "-", "1"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["m", "+", "1"]]]], "q"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "-", SubscriptBox["b", "j"]]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "]"]]]]]]]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]], " ", SubscriptBox["d", "1"]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "2"]]]], "]"]], " ", SubscriptBox["d", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["q", "-", "p", "-", "2"]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "2"]]]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], " ", SubscriptBox["d", "3"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Beta]", "\[Equal]", RowBox[List["q", "-", "p"]]]], "&&", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n"]]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], ")"]], " ", SuperscriptBox["z", SubscriptBox["b", "r"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n"]]], " ", "z"]], ")"]], RowBox[List["\[Chi]", "-", SubscriptBox["b", "r"]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "r"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], "]"]]]]]]]]]]], "&&", RowBox[List[SubscriptBox["d", "2"], "\[Equal]", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", FractionBox["3", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], ")"]], " ", SuperscriptBox["z", SubscriptBox["b", "r"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List["\[Chi]", "-", SubscriptBox["b", "r"]]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Chi]", "-", SubscriptBox["b", "r"]]], ")"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["1", "2"]]], "]"]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "r"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], "]"]]]]]]]]]]], "&&", RowBox[List[SubscriptBox["d", "3"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], FractionBox[RowBox[List["1", "-", "\[Beta]"]], "2"]], " ", SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", "1"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Beta]", " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["p", "-", "m", "-", "n"]], ")"]]]], "\[Beta]"], "]"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "\[Beta]"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["p", "-", "m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Chi]", "-", SubscriptBox["b", "r"]]], ")"]]]], "+", RowBox[List["\[Beta]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["p", "-", "m", "-", "n"]], ")"]]]], "\[Beta]"], "]"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "\[Beta]"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["1", "\[Beta]"]]], "]"]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "r"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "r"]]], ")"]]]], "]"]]]], "]"]]]]]]]]], SqrtBox["\[Beta]"]]]], "&&", RowBox[List["\[Chi]", "\[Equal]", FractionBox[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "+", FractionBox[RowBox[List["1", "-", "\[Beta]"]], "2"]]], "\[Beta]"]]], "&&", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "n"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "n"]]]]]]], RowBox[List["(", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]]]], ")"]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] |  |   |  
  |  
  
  
  
 |  
 
 |