|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Series representations
Residue representations
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.06.0045.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]},
{Subscript[a, n + 1], \[Ellipsis], Subscript[a, p]}},
{{Subscript[b, 1], \[Ellipsis], Subscript[b, m]},
{Subscript[b, m + 1], \[Ellipsis], Subscript[b, q]}}, z] ==
Sum[Residue[Product[Gamma[Subscript[b, k] + s]
Product[Gamma[1 - Subscript[a, k] - s], {k, 1, n}], {k, 1, m}]/
Product[Gamma[Subscript[a, k] + s] Product[
Gamma[1 - Subscript[b, k] - s], {k, m + 1, q}], {k, n + 1, p}]/z^s,
{s, -Subscript[b, k] - j}], {k, 1, m}, {j, 0, Infinity}] /;
p < q || (p == q && Abs[z] < 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "k"], "+", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "k"], "-", "s"]], "]"]]]]]]]], " "]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "+", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["m", "+", "1"]]]], "q"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["b", "k"], "-", "s"]], "]"]]]]]]]]], SuperscriptBox["z", RowBox[List["-", "s"]]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List[RowBox[List["-", SubscriptBox["b", "k"]]], "-", "j"]]]], "}"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["p", "<", "q"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["p", "\[Equal]", "q"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mi> p </mi> <mo> , </mo> <mi> q </mi> </mrow> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> p </mi> </munderover> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> q </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> < </mo> <mi> q </mi> </mrow> <mo> ∨ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> ⩵ </mo> <mi> q </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mi> p </mi> <mo> , </mo> <mi> q </mi> </mrow> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> p </mi> </munderover> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> q </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> < </mo> <mi> q </mi> </mrow> <mo> ∨ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> ⩵ </mo> <mi> q </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "n_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a_", RowBox[List["n_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "m_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", RowBox[List["m_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "k"], "+", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "k"], "-", "s"]], "]"]]]]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "s"]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "+", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["m", "+", "1"]]]], "q"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["b", "k"], "-", "s"]], "]"]]]]]]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List[RowBox[List["-", SubscriptBox["b", "k"]]], "-", "j"]]]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["p", "<", "q"]], "||", RowBox[List["(", RowBox[List[RowBox[List["p", "\[Equal]", "q"]], "&&", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|