|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Integration
Definite integration
Generalization of classical Meijer's integral from two G functions
Fifteen subgroups for major 39 groups
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.21.0032.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Subscript[\[DoubleStruckG], 4] ==
((p - q) Re[\[Alpha] + Subscript[c, g] - 1] - r Re[\[Mu]] > -((3 r)/2) /;
1 <= g <= t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[SubscriptBox["\[DoubleStruckG]", "4"], "\[Equal]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["p", "-", "q"]], ")"]], RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", SubscriptBox["c", "g"], "-", "1"]], "]"]]]], "-", RowBox[List["r", " ", RowBox[List["Re", "[", "\[Mu]", "]"]]]]]], ">", RowBox[List["-", FractionBox[RowBox[List["3", "r"]], "2"]]]]], "/;", RowBox[List["1", "\[LessEqual]", "g", "\[LessEqual]", "t"]]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msub> <mi> 𝕘 </mi> <mn> 4 </mn> </msub> <mo> ⩵ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <msub> <mi> c </mi> <mi> g </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> μ </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> > </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mn> 1 </mn> <mo> ≤ </mo> <mi> g </mi> <mo> ≤ </mo> <mi> t </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> 𝕘 </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Condition </ci> <apply> <gt /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> <apply> <real /> <apply> <plus /> <ci> α </ci> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> g </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <real /> <ci> μ </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> g </ci> <ci> t </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SubscriptBox["$Failed", "4"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["p", "-", "q"]], ")"]], " ", RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", SubscriptBox["c", "g"], "-", "1"]], "]"]]]], "-", RowBox[List["r", " ", RowBox[List["Re", "[", "\[Mu]", "]"]]]]]], ">", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "r"]], ")"]]]]]], "/;", RowBox[List["1", "\[LessEqual]", "g", "\[LessEqual]", "t"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|