
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Integration
Definite integration
Generalization of classical Meijer's integral from two G functions
Fifteen subgroups for major 39 groups
|
|

|

|

|

|

|
http://functions.wolfram.com/07.34.21.0035.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Subscript[\[DoubleStruckG], 7] ==
((u - v) Re[\[Alpha] + r Subscript[b, j]] - Re[\[Rho]] > -(3/2) /;
1 <= j <= m)
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[SubscriptBox["\[DoubleStruckG]", "7"], "\[Equal]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["u", "-", "v"]], ")"]], RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", RowBox[List["r", " ", SubscriptBox["b", "j"]]]]], "]"]]]], "-", RowBox[List["Re", "[", "\[Rho]", "]"]]]], ">", RowBox[List["-", FractionBox["3", "2"]]]]], "/;", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "m"]]]], ")"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msub> <mi> 𝕘 </mi> <mn> 7 </mn> </msub> <mo> ⩵ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> u </mi> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ρ </mi> <mo> ) </mo> </mrow> </mrow> <mo> > </mo> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mn> 1 </mn> <mo> ≤ </mo> <mi> j </mi> <mo> ≤ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> 𝕘 </ci> <cn type='integer'> 7 </cn> </apply> <apply> <ci> Condition </ci> <apply> <gt /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> u </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <real /> <apply> <plus /> <ci> α </ci> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> ρ </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> j </ci> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SubscriptBox["$Failed", "7"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["u", "-", "v"]], ")"]], " ", RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", RowBox[List["r", " ", SubscriptBox["b", "j"]]]]], "]"]]]], "-", RowBox[List["Re", "[", "\[Rho]", "]"]]]], ">", RowBox[List["-", FractionBox["3", "2"]]]]], "/;", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "m"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|