|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Integration
Definite integration
Generalization of classical Meijer's integral from two G functions
Major 39 groups of conditions of convergence of generalization of classical Meijer's integral from two G functions
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.21.0048.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Subscript[\[DoubleStruckCapitalC], 5] == (p == q && u == v &&
SuperStar[b] == SuperStar[c] == 0 && \[Sigma] > 0 && \[Omega] > 0 &&
Re[\[Mu] + \[Rho]] < 1 && \[Sigma]^l != \[Omega]^k &&
Subscript[\[DoubleStruckG], 1] && Subscript[\[DoubleStruckG], 2] &&
Subscript[\[DoubleStruckG], 3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[SubscriptBox["\[DoubleStruckCapitalC]", "5"], "\[Equal]", RowBox[List["(", RowBox[List[RowBox[List["p", "\[Equal]", "q"]], "\[And]", RowBox[List["u", "\[Equal]", "v"]], "\[And]", RowBox[List[SuperscriptBox["b", "*"], "\[Equal]", SuperscriptBox["c", "*"], "\[Equal]", "0"]], "\[And]", RowBox[List["\[Sigma]", ">", "0"]], "\[And]", RowBox[List["\[Omega]", ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Mu]", "+", "\[Rho]"]], "]"]], "<", "1"]], "\[And]", RowBox[List[SuperscriptBox["\[Sigma]", "l"], "\[NotEqual]", SuperscriptBox["\[Omega]", "k"]]], "\[And]", SubscriptBox["\[DoubleStruckG]", "1"], "\[And]", SubscriptBox["\[DoubleStruckG]", "2"], "\[And]", SubscriptBox["\[DoubleStruckG]", "3"]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msub> <mi> ℂ </mi> <mn> 5 </mn> </msub> <mo> ⩵ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> ⩵ </mo> <mi> q </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> u </mi> <mo> ⩵ </mo> <mi> v </mi> </mrow> <mo> ∧ </mo> <mrow> <msup> <mi> b </mi> <mo> * </mo> </msup> <mo> ⩵ </mo> <msup> <mi> c </mi> <mo> * </mo> </msup> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> σ </mi> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> ω </mi> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ρ </mi> </mrow> <mo> ) </mo> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msup> <mi> σ </mi> <mi> l </mi> </msup> <mo> ≠ </mo> <msup> <mi> ω </mi> <mi> k </mi> </msup> </mrow> <mo> ∧ </mo> <msub> <mi> 𝕘 </mi> <mn> 1 </mn> </msub> <mo> ∧ </mo> <msub> <mi> 𝕘 </mi> <mn> 2 </mn> </msub> <mo> ∧ </mo> <msub> <mi> 𝕘 </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> ℂ </ci> <cn type='integer'> 5 </cn> </apply> <apply> <and /> <apply> <eq /> <ci> p </ci> <ci> q </ci> </apply> <apply> <eq /> <ci> u </ci> <ci> v </ci> </apply> <apply> <eq /> <apply> <ci> SuperStar </ci> <ci> b </ci> </apply> <apply> <ci> SuperStar </ci> <ci> c </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <ci> σ </ci> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <ci> ω </ci> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <real /> <apply> <plus /> <ci> μ </ci> <ci> ρ </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <neq /> <apply> <power /> <ci> σ </ci> <ci> l </ci> </apply> <apply> <power /> <ci> ω </ci> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> 𝕘 </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> 𝕘 </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> 𝕘 </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SubscriptBox["$Failed", "5"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["p", "\[Equal]", "q"]], "&&", RowBox[List["u", "\[Equal]", "v"]], "&&", RowBox[List[SuperscriptBox["b", "*"], "\[Equal]", SuperscriptBox["c", "*"], "\[Equal]", "0"]], "&&", RowBox[List["\[Sigma]", ">", "0"]], "&&", RowBox[List["\[Omega]", ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Mu]", "+", "\[Rho]"]], "]"]], "<", "1"]], "&&", RowBox[List[SuperscriptBox["\[Sigma]", "l"], "\[NotEqual]", SuperscriptBox["\[Omega]", "k"]]], "&&", SubscriptBox["\[DoubleStruckG]", "1"], "&&", SubscriptBox["\[DoubleStruckG]", "2"], "&&", SubscriptBox["\[DoubleStruckG]", "3"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|