|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Integration
Definite integration
Generalization of classical Meijer's integral from two G functions
Major 39 groups of conditions of convergence of generalization of classical Meijer's integral from two G functions
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.21.0064.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Subscript[\[DoubleStruckCapitalC], 21] == (m == 0 && n > 0 &&
SuperStar[c] > 0 && \[Phi] > 0 && Subscript[\[DoubleStruckG], 1] &&
Subscript[\[DoubleStruckG], 3] && Subscript[\[DoubleStruckG], 12])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[SubscriptBox["\[DoubleStruckCapitalC]", "21"], "\[Equal]", RowBox[List["(", RowBox[List[RowBox[List["m", "\[Equal]", "0"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List[SuperscriptBox["c", "*"], ">", "0"]], "\[And]", RowBox[List["\[Phi]", ">", "0"]], "\[And]", SubscriptBox["\[DoubleStruckG]", "1"], "\[And]", SubscriptBox["\[DoubleStruckG]", "3"], "\[And]", SubscriptBox["\[DoubleStruckG]", "12"]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msub> <mi> ℂ </mi> <mn> 21 </mn> </msub> <mo> ⩵ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <msup> <mi> c </mi> <mo> * </mo> </msup> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> ϕ </mi> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <msub> <mi> 𝕘 </mi> <mn> 1 </mn> </msub> <mo> ∧ </mo> <msub> <mi> 𝕘 </mi> <mn> 3 </mn> </msub> <mo> ∧ </mo> <msub> <mi> 𝕘 </mi> <mn> 12 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> ℂ </ci> <cn type='integer'> 21 </cn> </apply> <apply> <and /> <apply> <eq /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <ci> SuperStar </ci> <ci> c </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <ci> ϕ </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> 𝕘 </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> 𝕘 </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> 𝕘 </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SubscriptBox["$Failed", "21"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["m", "\[Equal]", "0"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List[SuperscriptBox["c", "*"], ">", "0"]], "&&", RowBox[List["\[Phi]", ">", "0"]], "&&", SubscriptBox["\[DoubleStruckG]", "1"], "&&", SubscriptBox["\[DoubleStruckG]", "3"], "&&", SubscriptBox["\[DoubleStruckG]", "12"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|