|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
Integration
Definite integration
Integral by variable in parameters
|
|
|
|
|
|
|
http://functions.wolfram.com/07.34.21.0083.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]},
{Subscript[a, n + 1], \[Ellipsis], Subscript[a, p - 2],
Subscript[a, p - 1] + \[Tau], Subscript[a, p] + \[Tau]}},
{{Subscript[b, 1], \[Ellipsis], Subscript[b, m]},
{Subscript[b, m + 1], \[Ellipsis], Subscript[b, q - 2],
Subscript[b, q - 1] + \[Tau], Subscript[b, q] + \[Tau]}},
\[Omega] \[Tau]], {\[Tau], -Infinity, Infinity}] ==
(Gamma[Subscript[a, p - 1] + Subscript[a, p] - Subscript[b, q - 1] -
Subscript[b, q] - 1]/(Gamma[Subscript[a, p - 1] - Subscript[b, q - 1]]
Gamma[Subscript[a, p - 1] - Subscript[b, q]]
Gamma[Subscript[a, p] - Subscript[b, q - 1]]
Gamma[Subscript[a, p] - Subscript[b, q]]))
MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]},
{Subscript[a, n + 1], \[Ellipsis], Subscript[a, p - 2]}},
{{Subscript[b, 1], \[Ellipsis], Subscript[b, m]},
{Subscript[b, m + 1], \[Ellipsis], Subscript[b, q - 2]}}, \[Omega]] /;
SuperStar[c] > 0 && Abs[Arg[\[Omega]]] < SuperStar[c] Pi &&
Re[Sum[Subscript[a, j], {j, 1, p}] - Sum[Subscript[b, j], {j, 1, q}]] > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["p", "-", "2"]]], ",", RowBox[List[SubscriptBox["a", RowBox[List["p", "-", "1"]]], "+", "\[Tau]"]], ",", RowBox[List[SubscriptBox["a", "p"], "+", "\[Tau]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["q", "-", "2"]]], ",", RowBox[List[SubscriptBox["b", RowBox[List["q", "-", "1"]]], "+", "\[Tau]"]], ",", RowBox[List[SubscriptBox["b", "q"], "+", "\[Tau]"]]]], "}"]]]], "}"]], ",", RowBox[List["\[Omega]", " ", "\[Tau]"]]]], "]"]], RowBox[List["\[DifferentialD]", "\[Tau]"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", RowBox[List["p", "-", "1"]]], "+", SubscriptBox["a", "p"], "-", SubscriptBox["b", RowBox[List["q", "-", "1"]]], "-", SubscriptBox["b", "q"], "-", "1"]], "]"]], " "]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", RowBox[List["p", "-", "1"]]], "-", SubscriptBox["b", RowBox[List["q", "-", "1"]]]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", RowBox[List["p", "-", "1"]]], "-", SubscriptBox["b", "q"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "p"], "-", SubscriptBox["b", RowBox[List["q", "-", "1"]]]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "p"], "-", SubscriptBox["b", "q"]]], "]"]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["p", "-", "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["q", "-", "2"]]]]], "}"]]]], "}"]], ",", "\[Omega]"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[SuperscriptBox["c", "*"], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "\[Omega]", "]"]], "]"]], "<", RowBox[List[SuperscriptBox["c", "*"], "\[Pi]"]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]]]], "]"]], ">", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mi> ∞ </mi> </msubsup> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mi> p </mi> <mo> , </mo> <mi> q </mi> </mrow> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ω </mi> <mo> ⁢ </mo> <mi> τ </mi> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mi> τ </mi> <mo> + </mo> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> , </mo> <mrow> <mi> τ </mi> <mo> + </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mi> τ </mi> <mo> + </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> , </mo> <mrow> <mi> τ </mi> <mo> + </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["\[Omega]", " ", "\[Tau]"]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["p", "-", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Tau]", "+", SubscriptBox["a", RowBox[List["p", "-", "1"]]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Tau]", "+", SubscriptBox["a", "p"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["q", "-", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Tau]", "+", SubscriptBox["b", RowBox[List["q", "-", "1"]]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Tau]", "+", SubscriptBox["b", "q"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> τ </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> q </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </mrow> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ω </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List[RowBox[List["p", "-", "2"]], ",", RowBox[List["q", "-", "2"]]]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["\[Omega]", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["p", "-", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["q", "-", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msup> <mi> c </mi> <mo> * </mo> </msup> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ω </mi> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mrow> <msup> <mi> c </mi> <mo> * </mo> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mi> ∞ </mi> </msubsup> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mi> p </mi> <mo> , </mo> <mi> q </mi> </mrow> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ω </mi> <mo> ⁢ </mo> <mi> τ </mi> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mi> τ </mi> <mo> + </mo> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> , </mo> <mrow> <mi> τ </mi> <mo> + </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mi> τ </mi> <mo> + </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> , </mo> <mrow> <mi> τ </mi> <mo> + </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["\[Omega]", " ", "\[Tau]"]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["p", "-", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Tau]", "+", SubscriptBox["a", RowBox[List["p", "-", "1"]]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Tau]", "+", SubscriptBox["a", "p"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["q", "-", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Tau]", "+", SubscriptBox["b", RowBox[List["q", "-", "1"]]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Tau]", "+", SubscriptBox["b", "q"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> τ </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> q </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </mrow> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ω </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List[RowBox[List["p", "-", "2"]], ",", RowBox[List["q", "-", "2"]]]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["\[Omega]", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["p", "-", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["q", "-", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msup> <mi> c </mi> <mo> * </mo> </msup> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ω </mi> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mrow> <msup> <mi> c </mi> <mo> * </mo> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "n_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a_", RowBox[List["n_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", RowBox[List["p_", "-", "2"]]], ",", RowBox[List[SubscriptBox["a_", RowBox[List["p_", "-", "1"]]], "+", "\[Tau]_"]], ",", RowBox[List[SubscriptBox["a_", "p_"], "+", "\[Tau]_"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "m_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", RowBox[List["m_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", RowBox[List["q_", "-", "2"]]], ",", RowBox[List[SubscriptBox["b_", RowBox[List["q_", "-", "1"]]], "+", "\[Tau]_"]], ",", RowBox[List[SubscriptBox["b_", "q_"], "+", "\[Tau]_"]]]], "}"]]]], "}"]], ",", RowBox[List["\[Omega]_", " ", "\[Tau]_"]]]], "]"]], RowBox[List["\[DifferentialD]", "\[Tau]_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", RowBox[List["p", "-", "1"]]], "+", SubscriptBox["aa", "p"], "-", SubscriptBox["b", RowBox[List["q", "-", "1"]]], "-", SubscriptBox["bb", "q"], "-", "1"]], "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["aa", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["p", "-", "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["q", "-", "2"]]]]], "}"]]]], "}"]], ",", "\[Omega]"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", RowBox[List["p", "-", "1"]]], "-", SubscriptBox["b", RowBox[List["q", "-", "1"]]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", RowBox[List["p", "-", "1"]]], "-", SubscriptBox["bb", "q"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "p"], "-", SubscriptBox["b", RowBox[List["q", "-", "1"]]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "p"], "-", SubscriptBox["bb", "q"]]], "]"]]]]], "/;", RowBox[List[RowBox[List[SuperscriptBox["c", "*"], ">", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "\[Omega]", "]"]], "]"]], "<", RowBox[List[SuperscriptBox["c", "*"], " ", "\[Pi]"]]]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]]]], "]"]], ">", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] | |
|
|
|