  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
Hypergeometric Functions
 
MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z]
 
Integral transforms
 
Mellin transforms
 
 | 
 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.34.22.0004.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    MellinTransform[MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]}, 
     {Subscript[a, n + 1], \[Ellipsis], Subscript[a, p]}}, 
    {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, 
     {Subscript[b, m + 1], \[Ellipsis], Subscript[b, q]}}, \[Omega] t], t, 
   z] == Product[Gamma[Subscript[b, k] + z] 
      Product[Gamma[1 - Subscript[a, k] - z], {k, 1, n}], {k, 1, m}]/
    Product[Gamma[Subscript[a, k] + z] 
      Product[Gamma[1 - Subscript[b, k] - z], {k, m + 1, q}], {k, n + 1, p}]/
   \[Omega]^z /; m^2 + n^2 > 0 && \[Omega] != 0 && 
  ((SuperStar[c] > 0 && Abs[Arg[\[Omega]]] < SuperStar[c] Pi && 
    -Min[Re[Subscript[b, 1]], \[Ellipsis], Re[Subscript[b, m]]] < Re[z] < 
     1 - Max[Re[Subscript[a, 1]], \[Ellipsis], Re[Subscript[a, n]]]) || 
   (p != q && SuperStar[c] >= 0 && Abs[Arg[\[Omega]]] == SuperStar[c] Pi && 
    -Min[Re[Subscript[b, 1]], \[Ellipsis], Re[Subscript[b, m]]] < Re[z] < 
     1 - Max[Re[Subscript[a, 1]], \[Ellipsis], Re[Subscript[a, n]]] && 
    Re[\[Mu] + (q - p) z] < 3/2 && \[Mu] == Sum[Subscript[b, j], {j, 1, q}] - 
      Sum[Subscript[a, j], {j, 1, p}] + (p - q)/2 + 1) || 
   (p == q && SuperStar[c] == 0 && \[Omega] > 0 && 
    -Min[Re[Subscript[b, 1]], \[Ellipsis], Re[Subscript[b, m]]] < Re[z] < 
     1 - Max[Re[Subscript[a, 1]], \[Ellipsis], Re[Subscript[a, n]]] && 
    Re[Sum[Subscript[b, j] - Subscript[a, j], {j, 1, q}]] < 0)) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MellinTransform", "[", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]]]], "}"]], ",", RowBox[List["\[Omega]", " ", "t"]]]], "]"]], ",", "t", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["\[Omega]", RowBox[List["-", "z"]]], FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "k"], "+", "z"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "k"], "-", "z"]], "]"]], " "]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "+", "z"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["m", "+", "1"]]]], "q"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["b", "k"], "-", "z"]], "]"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["m", "2"], "+", SuperscriptBox["n", "2"]]], ">", "0"]], "\[And]", RowBox[List["\[Omega]", "\[NotEqual]", "0"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["c", "*"], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "\[Omega]", "]"]], "]"]], "<", RowBox[List[SuperscriptBox["c", "*"], "\[Pi]"]]]], "\[And]", RowBox[List[RowBox[List["-", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["b", "m"], "]"]]]], "]"]]]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List["1", "-", RowBox[List["Max", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["a", "n"], "]"]]]], "]"]]]]]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["p", "\[NotEqual]", "q"]], "\[And]", RowBox[List[SuperscriptBox["c", "*"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "\[Omega]", "]"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["c", "*"], "\[Pi]"]]]], "\[And]", RowBox[List[RowBox[List["-", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["b", "m"], "]"]]]], "]"]]]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List["1", "-", RowBox[List["Max", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["a", "n"], "]"]]]], "]"]]]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Mu]", "+", RowBox[List[RowBox[List["(", RowBox[List["q", "-", "p"]], ")"]], "z"]]]], "]"]], "<", FractionBox["3", "2"]]], "\[And]", RowBox[List["\[Mu]", "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "+", FractionBox[RowBox[List["p", "-", "q"]], "2"], "+", "1"]]]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["p", "\[Equal]", "q"]], "\[And]", RowBox[List[SuperscriptBox["c", "*"], "\[Equal]", "0"]], "\[And]", RowBox[List["\[Omega]", ">", "0"]], "\[And]", RowBox[List[RowBox[List["-", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["b", "m"], "]"]]]], "]"]]]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List["1", "-", RowBox[List["Max", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["a", "n"], "]"]]]], "]"]]]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "j"]]], ")"]]]], "]"]], "<", "0"]]]], ")"]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <msub>  <mi> ℳ </mi>  <mi> t </mi>  </msub>  <mo> [ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> p </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ω </mi>  <mo> ⁢ </mo>  <mi> t </mi>  </mrow>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["\[Omega]", " ", "t"]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  <mo> ] </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> ω </mi>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <msup>  <mi> m </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <msup>  <mi> n </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> ω </mi>  <mo> ≠ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ω </mi>  <mo> ) </mo>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> < </mo>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> min </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> < </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∨ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ≠ </mo>  <mi> q </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> ≥ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ω </mi>  <mo> ) </mo>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> min </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> < </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mi> μ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> μ </mi>  <mo> ⩵ </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> p </mi>  </munderover>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∨ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⩵ </mo>  <mi> q </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> ⩵ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> ω </mi>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> min </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> < </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mn> 0 </mn>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <mrow>  <mrow>  <mrow>  <mrow>  <msub>  <mi> ℳ </mi>  <mi> t </mi>  </msub>  <mo> [ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mi> p </mi>  <mo> , </mo>  <mi> q </mi>  </mrow>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ω </mi>  <mo> ⁢ </mo>  <mi> t </mi>  </mrow>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mi> p </mi>  </msub>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["p", ",", "q"]], RowBox[List["m", ",", "n"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["\[Omega]", " ", "t"]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[SubscriptBox["a", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "n"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["n", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox["b", "1"], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "m"], MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", RowBox[List["m", "+", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  <mo> ] </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> ω </mi>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </munderover>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> p </mi>  </munderover>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <msup>  <mi> m </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <msup>  <mi> n </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> ω </mi>  <mo> ≠ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ω </mi>  <mo> ) </mo>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> < </mo>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> min </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> < </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∨ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ≠ </mo>  <mi> q </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> ≥ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ω </mi>  <mo> ) </mo>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ⩵ </mo>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> min </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> < </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mi> μ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> μ </mi>  <mo> ⩵ </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> p </mi>  </munderover>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> q </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∨ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⩵ </mo>  <mi> q </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <msup>  <mi> c </mi>  <mo> * </mo>  </msup>  <mo> ⩵ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> ω </mi>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> min </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> m </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> < </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> n </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mn> 0 </mn>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MellinTransform", "[", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "n_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a_", RowBox[List["n_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "m_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", RowBox[List["m_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]]]], "}"]], ",", RowBox[List["\[Omega]_", " ", "t_"]]]], "]"]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Omega]", RowBox[List["-", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "k"], "+", "z"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["a", "k"], "-", "z"]], "]"]]]]]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "+", "z"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", RowBox[List["m", "+", "1"]]]], "q"], RowBox[List["Gamma", "[", RowBox[List["1", "-", SubscriptBox["b", "k"], "-", "z"]], "]"]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["m", "2"], "+", SuperscriptBox["n", "2"]]], ">", "0"]], "&&", RowBox[List["\[Omega]", "\[NotEqual]", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["c", "*"], ">", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "\[Omega]", "]"]], "]"]], "<", RowBox[List[SuperscriptBox["c", "*"], " ", "\[Pi]"]]]], "&&", RowBox[List[RowBox[List["-", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["b", "m"], "]"]]]], "]"]]]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List["1", "-", RowBox[List["Max", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["a", "n"], "]"]]]], "]"]]]]]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["p", "\[NotEqual]", "q"]], "&&", RowBox[List[SuperscriptBox["c", "*"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "\[Omega]", "]"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["c", "*"], " ", "\[Pi]"]]]], "&&", RowBox[List[RowBox[List["-", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["b", "m"], "]"]]]], "]"]]]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List["1", "-", RowBox[List["Max", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["a", "n"], "]"]]]], "]"]]]]]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Mu]", "+", RowBox[List[RowBox[List["(", RowBox[List["q", "-", "p"]], ")"]], " ", "z"]]]], "]"]], "<", FractionBox["3", "2"]]], "&&", RowBox[List["\[Mu]", "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "+", FractionBox[RowBox[List["p", "-", "q"]], "2"], "+", "1"]]]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["p", "\[Equal]", "q"]], "&&", RowBox[List[SuperscriptBox["c", "*"], "\[Equal]", "0"]], "&&", RowBox[List["\[Omega]", ">", "0"]], "&&", RowBox[List[RowBox[List["-", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["b", "m"], "]"]]]], "]"]]]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List["1", "-", RowBox[List["Max", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["a", "n"], "]"]]]], "]"]]]]]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "j"]]], ")"]]]], "]"]], "<", "0"]]]], ")"]]]], ")"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] |  |   |  
  |  
  
  
  
 |  
 
 |