Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
MeijerG






Mathematica Notation

Traditional Notation









Hypergeometric Functions > MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z,r] > Specific values > Specialized values > Case {m,n,p,q}={2,1,2,3}





http://functions.wolfram.com/07.35.03.0118.01









  


  










Input Form





MeijerG[{{a}, {-(3/2) + a}}, {{-(7/6) + a, 1/6 + a}, {-(3/2) + a}}, z, 2/3] == (((2 2^(1/3) Sqrt[Pi])/3^(1/6)) z^(-(7/4) + (3 a)/2) AiryBiPrime[(3^(2/3) z)/(2 2^(1/3))])/E^(z^(3/2)/2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", "a"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["7", "6"]]], "+", "a"]], ",", RowBox[List[FractionBox["1", "6"], "+", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", "a"]], "}"]]]], "}"]], ",", "z", ",", FractionBox["2", "3"]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], SqrtBox["\[Pi]"], " "]], SuperscriptBox["3", RowBox[List["1", "/", "6"]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["7", "4"]]], "+", FractionBox[RowBox[List["3", " ", "a"]], "2"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", RowBox[List["3", "/", "2"]]], "2"]]]], " ", RowBox[List["AiryBiPrime", "[", FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", "z"]], RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]]]], MeijerG], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;a&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;-&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;-&quot;, FractionBox[&quot;7&quot;, &quot;6&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;6&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;-&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mfrac> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> MeijerG </ci> <list> <list> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </list> </list> <list> <list> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 6 </cn> </apply> </apply> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </list> </list> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "a_", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", "a_"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["7", "6"]]], "+", "a_"]], ",", RowBox[List[FractionBox["1", "6"], "+", "a_"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", "a_"]], "}"]]]], "}"]], ",", "z_", ",", FractionBox["2", "3"]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SqrtBox["\[Pi]"]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["7", "4"]]], "+", FractionBox[RowBox[List["3", " ", "a"]], "2"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", RowBox[List["3", "/", "2"]]], "2"]]]], " ", RowBox[List["AiryBiPrime", "[", FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", "z"]], RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]]], "]"]]]], SuperscriptBox["3", RowBox[List["1", "/", "6"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29