Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WhittakerW






Mathematica Notation

Traditional Notation









Hypergeometric Functions > WhittakerW[nu,mu,z] > Series representations > Generalized power series > Expansions at z==0 > Logarithmic case





http://functions.wolfram.com/07.45.06.0014.01









  


  










Input Form





WhittakerW[\[Nu], 0, z] \[Proportional] (-(Sqrt[z]/Gamma[1/2 - \[Nu]])) ((1 - z \[Nu] + ((1 + 4 \[Nu]^2)/16) z^2 + \[Ellipsis]) Log[z] + 2 EulerGamma + PolyGamma[1/2 - \[Nu]] - (1/2) (2 - 4 \[Nu] + 4 EulerGamma \[Nu] + PolyGamma[1/2 - \[Nu]] + (-1 + 2 \[Nu]) PolyGamma[3/2 - \[Nu]]) z + (1/8) (2 EulerGamma + PolyGamma[1/2 - \[Nu]] + 2 (-1 + 2 \[Nu]) (-2 + 2 EulerGamma + PolyGamma[3/2 - \[Nu]]) + (1/2) (-3 + 2 \[Nu]) (-1 + 2 \[Nu]) (-3 + 2 EulerGamma + PolyGamma[5/2 - \[Nu]])) z^2 + \[Ellipsis]) /; (z -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WhittakerW", "[", RowBox[List["\[Nu]", ",", "0", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox["z"], " "]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", " ", "\[Nu]"]], "+", RowBox[List[FractionBox[RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], "16"], SuperscriptBox["z", "2"]]], "+", "\[Ellipsis]"]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], "]"]], "-", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List["2", "-", RowBox[List["4", " ", "\[Nu]"]], "+", RowBox[List["4", " ", "EulerGamma", " ", "\[Nu]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "\[Nu]"]], "]"]]]]]], ")"]], "z"]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "\[Nu]"]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["5", "2"], "-", "\[Nu]"]], "]"]]]], ")"]]]]]], ")"]], SuperscriptBox["z", "2"]]], " ", "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> W </mi> <annotation encoding='Mathematica'> TagBox[&quot;W&quot;, WhittakerW] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 16 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> WhittakerW </ci> <ci> &#957; </ci> <cn type='integer'> 0 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <eulergamma /> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 5 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WhittakerW", "[", RowBox[List["\[Nu]_", ",", "0", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", " ", "\[Nu]"]], "+", RowBox[List[FractionBox["1", "16"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", "\[Ellipsis]"]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], "]"]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["4", " ", "\[Nu]"]], "+", RowBox[List["4", " ", "EulerGamma", " ", "\[Nu]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "\[Nu]"]], "]"]]]]]], ")"]], " ", "z"]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "\[Nu]"]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["5", "2"], "-", "\[Nu]"]], "]"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], "]"]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02