|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.45.06.0016.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WhittakerW[\[Nu], \[Mu], z] == (((-1)^(1 + 2 \[Mu]) z^(1/2 + \[Mu]))/
Gamma[1/2 - \[Mu] - \[Nu]])
((Log[z]/(2 \[Mu])!)
Sum[(((-(1/2))^(k - j) Pochhammer[1/2 + \[Mu] - \[Nu], j])/
(j! (k - j)! Pochhammer[1 + 2 \[Mu], j])) z^k, {k, 0, Infinity},
{j, 0, k}] - Sum[(((-(1/2))^j (-1 - k + j + 2 \[Mu])!)/
(j! (k - j)! Pochhammer[1/2 - \[Mu] + \[Nu], -k + j + 2 \[Mu]])) z^k,
{k, 0, 2 \[Mu] - 1}, {j, 0, k}]/z^(2 \[Mu]) +
Sum[(((-1)^(j + k) 2^(-1 - j - k) j!)/((1 + j + k)! (2 \[Mu] - j - 1)!
Pochhammer[1/2 - \[Mu] + \[Nu], 1 + j])) z^k, {k, 0, Infinity},
{j, 0, 2 \[Mu] - 1}] -
Sum[(((-(1/2))^(k - j) Pochhammer[1/2 + \[Mu] - \[Nu], j])/
(j! (k - j)! (j + 2 \[Mu])!)) (PolyGamma[1 + j] +
PolyGamma[1 + j + 2 \[Mu]] - PolyGamma[1/2 + j + \[Mu] - \[Nu]]) z^k,
{k, 0, Infinity}, {j, 0, k}]) /; Element[2 \[Mu], Integers] &&
2 \[Mu] >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List["WhittakerW", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List[RowBox[List["(", RowBox[List["2", "\[Mu]"]], ")"]], "!"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "-", "j"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", "j"]], "]"]]]], RowBox[List[RowBox[List["j", "!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ",", "j"]], "]"]]]]], SuperscriptBox["z", "k"]]]]]]]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], "j"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k", "+", "j", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], "!"]]]], RowBox[List[RowBox[List["j", "!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "k"]], "+", "j", "+", RowBox[List["2", " ", "\[Mu]"]]]]]], "]"]]]]], SuperscriptBox["z", "k"]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["2", "\[Mu]"]], "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", "k"]]], " ", RowBox[List["j", "!"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j", "+", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "-", "j", "-", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "j"]]]], "]"]]]]], SuperscriptBox["z", "k"]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "-", "j"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", "j"]], "]"]], " "]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List["j", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "j"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "j", "+", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "j", "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], SuperscriptBox["z", "k"]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["2", "\[Mu]"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["2", "\[Mu]"]], "\[GreaterEqual]", "0"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> W </mi> <annotation encoding='Mathematica'> TagBox["W", WhittakerW] </annotation> </semantics> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </msup> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", "\[Mu]", "+", FractionBox["1", "2"]]], ")"]], RowBox[List["j", "-", "k", "+", RowBox[List["2", " ", "\[Mu]"]]]]], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]", "+", FractionBox["1", "2"]]], ")"]], "j"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", "1"]], ")"]], "j"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", "\[Mu]", "+", FractionBox["1", "2"]]], ")"]], RowBox[List["j", "+", "1"]]], Pochhammer] </annotation> </semantics> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]", "+", FractionBox["1", "2"]]], ")"]], "j"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> WhittakerW </ci> <ci> ν </ci> <ci> μ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> μ </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> μ </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> PolyGamma </ci> <ci> ψ </ci> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> j </ci> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WhittakerW", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "-", "j"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", "j"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ",", "j"]], "]"]]]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Mu]"]], ")"]], "!"]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], "j"], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "k", "+", "j", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "k"]], "+", "j", "+", RowBox[List["2", " ", "\[Mu]"]]]]]], "]"]]]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", "k"]]], " ", RowBox[List["j", "!"]]]], ")"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j", "+", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "-", "j", "-", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "j"]]]], "]"]]]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "-", "j"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", "j"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "j"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "j", "+", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "j", "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], "!"]]]]]]]]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]]], "/;", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|