|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.45.20.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[0, 1, 0][WhittakerW][\[Nu], \[Mu], z] ==
((2 Gamma[-2 \[Mu]])/Gamma[1/2 - \[Mu] - \[Nu]]) Log[z]
WhittakerM[\[Nu], \[Mu], z] - (2 Pi Cot[2 Pi \[Mu]] + Log[z] -
PolyGamma[1/2 - \[Mu] - \[Nu]] + PolyGamma[1/2 + \[Mu] - \[Nu]])
WhittakerW[\[Nu], \[Mu], z] +
((Gamma[-2 \[Mu]]/Gamma[1/2 - \[Mu] - \[Nu]]) z^(1/2 + \[Mu])
Sum[(Pochhammer[1/2 + \[Mu] - \[Nu], k]/(Pochhammer[1 + 2 \[Mu], k] k!))
(-2 PolyGamma[1 + k + 2 \[Mu]] + PolyGamma[1/2 + k + \[Mu] - \[Nu]])
z^k, {k, 0, Infinity}])/E^(z/2) -
((Gamma[2 \[Mu]]/Gamma[1/2 + \[Mu] - \[Nu]]) z^(1/2 - \[Mu])
Sum[(Pochhammer[1/2 - \[Mu] - \[Nu], k]/(Pochhammer[1 - 2 \[Mu], k] k!))
(-2 PolyGamma[1 + k - 2 \[Mu]] + PolyGamma[1/2 + k - \[Mu] - \[Nu]])
z^k, {k, 0, Infinity}])/E^(z/2) /; !Element[2 \[Mu], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["0", ",", "1", ",", "0"]], "]"]], "[", "WhittakerW", "]"]], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", " ", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]]], " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]], "-", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["Cot", "[", RowBox[List["2", " ", "\[Pi]", " ", "\[Mu]"]], "]"]]]], "+", RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["WhittakerW", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]], "+", " ", RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]]], SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]]], SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", "k"]], "]"]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ",", "k"]], "]"]], RowBox[List["k", "!"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", RowBox[List["2", " ", "\[Mu]"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k", "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], SuperscriptBox["z", "k"]]]]]]], "-", " ", RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["2", " ", "\[Mu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], "]"]]], SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]"]]], SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ",", "k"]], "]"]], " "]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "\[Mu]"]]]], ",", "k"]], "]"]], RowBox[List["k", "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "-", RowBox[List["2", " ", "\[Mu]"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k", "-", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], SuperscriptBox["z", "k"]]]]]]]]]]], "/;", " ", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List["2", "\[Mu]"]], ",", "Integers"]], "]"]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> W </mi> <annotation encoding='Mathematica'> TagBox["W", BesselJ] </annotation> </semantics> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["0", ",", "1", ",", "0"]], ")"]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> μ </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> μ </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]", "+", FractionBox["1", "2"]]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", "1"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mi> log </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox["M", WhittakerM] </annotation> </semantics> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> W </mi> <annotation encoding='Mathematica'> TagBox["W", WhittakerW] </annotation> </semantics> <mrow> <mi> ν </mi> <mo> , </mo> <mi> μ </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> Subscript </ci> <apply> <ci> BesselJ </ci> <ci> W </ci> </apply> <ci> ν </ci> <ci> μ </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> PolyGamma </ci> <ci> ψ </ci> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> μ </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> μ </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> μ </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> log </ci> <ci> z </ci> <apply> <ci> WhittakerM </ci> <ci> ν </ci> <ci> μ </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <cot /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> μ </ci> </apply> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> μ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> WhittakerW </ci> <ci> ν </ci> <ci> μ </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["WhittakerW", TagBox[RowBox[List["(", RowBox[List["0", ",", "1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], "]"]]]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["Cot", "[", RowBox[List["2", " ", "\[Pi]", " ", "\[Mu]"]], "]"]]]], "+", RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["WhittakerW", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", RowBox[List["2", " ", "\[Mu]"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k", "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["2", " ", "\[Mu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "-", RowBox[List["2", " ", "\[Mu]"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k", "-", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "\[Mu]"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]]], "/;", RowBox[List["!", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "\[Element]", "Integers"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|