Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WhittakerW






Mathematica Notation

Traditional Notation









Hypergeometric Functions > WhittakerW[nu,mu,z] > Differentiation > Symbolic differentiation > With respect to nu





http://functions.wolfram.com/07.45.20.0008.01









  


  










Input Form





Derivative[n, 0, 0][WhittakerW][\[Nu], \[Mu], z] == (Gamma[-2 \[Mu]] z^(\[Mu] + 1/2) Sum[D[Pochhammer[\[Mu] - \[Nu] + 1/2, k]/Gamma[1/2 - \[Mu] - \[Nu]], {\[Nu], n}] (z^k/(Pochhammer[2 \[Mu] + 1, k] k!)), {k, 0, Infinity}])/ E^(z/2) + (Gamma[2 \[Mu]] z^(1/2 - \[Mu]) Sum[D[Pochhammer[1/2 - \[Mu] - \[Nu], k]/Gamma[1/2 + \[Mu] - \[Nu]], {\[Nu], n}] (z^k/(Pochhammer[1 - 2 \[Mu], k] k!)), {k, 0, Infinity}])/ E^(z/2) /; Element[n, Integers] && n >= 0 && !Element[2 \[Mu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["n", ",", "0", ",", "0"]], "]"]], "[", "WhittakerW", "]"]], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", " ", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], "]"]], SuperscriptBox["z", RowBox[List["\[Mu]", "+", FractionBox["1", "2"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["D", "[", RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Mu]", "-", "\[Nu]", "+", FractionBox["1", "2"]]], ",", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", "n"]], "}"]]]], "]"]], FractionBox[SuperscriptBox["z", "k"], RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", "1"]], ",", "k"]], "]"]], RowBox[List["k", "!"]]]]]]]]]]]]], "+", " ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["2", " ", "\[Mu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["D", "[", RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ",", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], "]"]]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", "n"]], "}"]]]], "]"]], FractionBox[SuperscriptBox["z", "k"], RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "\[Mu]"]]]], ",", "k"]], "]"]], RowBox[List["k", "!"]]]]]]]]]]]]]]]]], "/;", " ", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List["2", "\[Mu]"]], ",", "Integers"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> W </mi> <annotation encoding='Mathematica'> TagBox[&quot;W&quot;, BesselJ] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> <semantics> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;,&quot;, &quot;0&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mfrac> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <msup> <mi> z </mi> <mi> k </mi> </msup> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mfrac> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;-&quot;, &quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]]]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <ci> n </ci> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> Subscript </ci> <apply> <ci> BesselJ </ci> <ci> W </ci> </apply> <ci> &#957; </ci> <ci> &#956; </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["WhittakerW", TagBox[RowBox[List["(", RowBox[List["n", ",", "0", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List["\[Mu]", "+", FractionBox["1", "2"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "n"]], "}"]]]]], FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Mu]", "-", "\[Nu]", "+", FractionBox["1", "2"]]], ",", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], "]"]]]]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", "1"]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["2", " ", "\[Mu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "n"]], "}"]]]]], FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ",", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "\[Mu]"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["!", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02