Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WhittakerW






Mathematica Notation

Traditional Notation









Hypergeometric Functions > WhittakerW[nu,mu,z] > Differentiation > Fractional integro-differentiation > With respect to z





http://functions.wolfram.com/07.45.20.0016.01









  


  










Input Form





D[WhittakerW[\[Nu], \[Mu], z], {z, \[Alpha]}] == (-(z^(1/2 - \[Mu] - \[Alpha])/Gamma[1/2 + \[Mu] - \[Nu]])) (((-1)^(2 \[Mu])/(-2 \[Mu])!) Sum[(Pochhammer[1/2 - \[Mu] - \[Nu], j]/ (j! (k - j)! Pochhammer[1 - 2 \[Mu], j])) (-(1/2))^(k - j) FDLogConstant[z, k - \[Mu] + 1/2, \[Alpha]] z^k, {k, 0, Infinity}, {j, 0, k}] - (z^(2 \[Mu])/Pochhammer[1/2 + \[Mu] - \[Nu], -2 \[Mu]]) Sum[(((-1)^(k - j) (j - k - 2 \[Mu] - 1)! Pochhammer[ 1/2 + \[Mu] - \[Nu], k - j])/((k - j)! j!)) (-(1/2))^j FDPowerConstant[z, k + \[Mu] + 1/2, \[Alpha]] z^k, {k, 0, -1 - 2 \[Mu]}, {j, 0, k}] + (1/Pochhammer[1/2 + \[Mu] - \[Nu], -2 \[Mu]]) Sum[(((-1)^(2 \[Mu] + j) (-(1/2))^(j + k + 1) j! Pochhammer[1/2 + \[Mu] - \[Nu], -1 - 2 \[Mu] - j] Gamma[k - \[Mu] + 3/2])/((-1 - 2 \[Mu] - j)! (j + k + 1)! Gamma[k - \[Mu] + 3/2 - \[Alpha]])) z^k, {k, 0, Infinity}, {j, 0, -1 - 2 \[Mu]}] - (-1)^(2 \[Mu]) Sum[(((-(1/2))^(k - j) Pochhammer[1/2 - \[Mu] - \[Nu], j] Gamma[k - \[Mu] + 3/2])/(j! (j - 2 \[Mu])! (k - j)! Gamma[k - \[Mu] + 3/2 - \[Alpha]])) (PolyGamma[1 + j] + PolyGamma[1 + j - 2 \[Mu]] - PolyGamma[1/2 + j - \[Mu] - \[Nu]]) z^k, {k, 0, Infinity}, {j, 0, k}]) /; Element[-2 \[Mu], Integers] && -2 \[Mu] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], " ", RowBox[List["WhittakerW", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Alpha]"]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", " ", "\[Mu]"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], ")"]], "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ",", "j"]], "]"]], RowBox[List[RowBox[List["j", "!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "\[Mu]"]]]], ",", "j"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "-", "j"]]], RowBox[List["FDLogConstant", "[", RowBox[List["z", ",", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["1", "2"]]], ",", "\[Alpha]"]], "]"]], SuperscriptBox["z", "k"]]]]]]]]], "-", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["2", "\[Mu]"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]]]], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Mu]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "j"]]], RowBox[List[RowBox[List["(", RowBox[List["j", "-", "k", "-", RowBox[List["2", " ", "\[Mu]"]], "-", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", RowBox[List["k", "-", "j"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], RowBox[List["j", "!"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], "j"], RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["k", "+", "\[Mu]", "+", FractionBox["1", "2"]]], ",", "\[Alpha]"]], "]"]], SuperscriptBox["z", "k"]]]]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]]]], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Mu]"]]]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", "j"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["j", "+", "k", "+", "1"]]], RowBox[List["j", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Mu]"]], "-", "j"]]]], "]"]], RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["3", "2"]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Mu]"]], "-", "j"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List["j", "+", "k", "+", "1"]], ")"]], "!"]], RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["3", "2"], "-", "\[Alpha]"]], "]"]]]]], SuperscriptBox["z", "k"]]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", " ", "\[Mu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "-", "j"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ",", "j"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["3", "2"]]], "]"]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "-", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["3", "2"], "-", "\[Alpha]"]], "]"]]]]], RowBox[List["(", " ", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "j"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "j", "-", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "j", "-", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], SuperscriptBox["z", "k"]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], "\[Mu]"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "\[Mu]"]], ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <msub> <semantics> <mi> W </mi> <annotation encoding='Mathematica'> TagBox[&quot;W&quot;, WhittakerW] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#945; </mi> <mo> - </mo> <mi> &#956; </mi> </mrow> </msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;-&quot;, &quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]]]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> log </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mtext> </mtext> </mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;\[Mu]&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;j&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;\[Mu]&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[RowBox[List[&quot;-&quot;, &quot;j&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]], &quot;-&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#945; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;-&quot;, &quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#945; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> WhittakerW </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <ci> j </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> log </ci> </apply> <ci> &#945; </ci> </apply> <ci> z </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> j </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> exp </ci> </apply> <ci> &#945; </ci> </apply> <ci> z </ci> <apply> <plus /> <ci> k </ci> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> j </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#956; </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["WhittakerW", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", " ", "\[Mu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "-", "j"]]], " ", RowBox[List["FDLogConstant", "[", RowBox[List["z", ",", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["1", "2"]]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "\[Mu]"]]]], ",", "j"]], "]"]]]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], ")"]], "!"]]], "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["2", " ", "\[Mu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Mu]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "j"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "-", "k", "-", RowBox[List["2", " ", "\[Mu]"]], "-", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", RowBox[List["k", "-", "j"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], "j"], " ", RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["k", "+", "\[Mu]", "+", FractionBox["1", "2"]]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["j", "!"]]]]]]]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]]]], "]"]]], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Mu]"]]]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["j", "+", "k", "+", "1"]]], " ", RowBox[List["j", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Mu]"]], "-", "j"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["3", "2"]]], "]"]]]], ")"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "\[Mu]"]], "-", "j"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "k", "+", "1"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["3", "2"], "-", "\[Alpha]"]], "]"]]]]]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]]]], "]"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", " ", "\[Mu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "-", "j"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Mu]", "-", "\[Nu]"]], ",", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["3", "2"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "j"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "j", "-", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "j", "-", "\[Mu]", "-", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "-", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Mu]", "+", FractionBox["3", "2"], "-", "\[Alpha]"]], "]"]]]]]]]]]]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]"]], ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02