Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
DiscreteDelta






Mathematica Notation

Traditional Notation









Integer Functions > DiscreteDelta[n1,n2,...] > Introduction to the tensor functions





The best-known properties and formulas of the tensor functions

Simple values at zero and infinity

The tensor functions , , , and can have unit values at infinity:

Specific values for specialized variables

The tensor functions , , , , and have the following values for some specialized variables:

Analyticity

and are nonanalytical functions defined over . Their possible values are and .

and are nonanalytical functions defined over . Their possible values are and .

is a nonanalytical function, defined over the set of tuples of complex numbers with possible values .

Periodicity

The tensor functions , , , , and do not have periodicity.

Parity and symmetry quasi-permutation symmetry

The tensor functions , , , and are even functions:

The tensor functions , , and have permutation symmetry, for example:

Integral representations

The discrete delta function and Kronecker delta function have the following integral representations along the interval and unit circle :

Transformations

The tensor functions , , , , and satisfy various identities, for example:

Complex characteristics

The tensor functions , , , , and have the following complex characteristics:

Differentiation

Differentiation of the tensor functions and can be provided by the following formulas:

Fractional integro‐differentiation of the tensor functions and can be provided by the following formulas:

Indefinite integration

Indefinite integration of the tensor functions and can be provided by the following formulas:

Summation

The following relations represent the sifting properties of the Kronecker and discrete delta functions:

There exist various formulas including finite summation of signature , for example: