Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EulerE






Mathematica Notation

Traditional Notation









Integer Functions > EulerE[n] > Series representations > Asymptotic series expansions





http://functions.wolfram.com/04.12.06.0003.01









  


  










Input Form





EulerE[2 n] \[Proportional] ((4 Sqrt[Pi])/(2 n + 1)) Sum[(-1)^k (2^(2 k) - 1) Sqrt[k] ((2 k)/(Pi E))^(2 k) Binomial[2 n + 1, 2 k] (1 + O[1/n]), {k, 1, n}] /; (n -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EulerE", "[", RowBox[List["2", "n"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["4", SqrtBox["\[Pi]"]]], RowBox[List[RowBox[List["2", "n"]], "+", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "k"]]], "-", "1"]], ")"]], " ", SqrtBox["k"], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["2", "k"]], RowBox[List["\[Pi]", " ", "\[ExponentialE]"]]], ")"]], RowBox[List["2", " ", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ",", RowBox[List["2", " ", "k"]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "n"], "]"]]]], ")"]]]]]]]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, EulerE] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> k </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8519; </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]], &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;k&quot;]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> n </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> EulerE </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> <apply> <power /> <apply> <times /> <pi /> <exponentiale /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EulerE", "[", RowBox[List["2", " ", "n_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["4", " ", SqrtBox["\[Pi]"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "k"]]], "-", "1"]], ")"]], " ", SqrtBox["k"], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["2", " ", "k"]], RowBox[List["\[Pi]", " ", "\[ExponentialE]"]]], ")"]], RowBox[List["2", " ", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ",", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "n"], "]"]]]], ")"]]]]]]]], RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29